Structure and replication of DNA

Mark Scheme 1

Level	International A Level		
Subject	Biology		
Exam Board	CIE		
Topic	Nucleic acids and protein synthesis		
Sub Topic	Structure and replication of DNA		
Booklet	Theory		
Paper Type	Mark Scheme 1		

Time Allowed: 71 minutes

Score : /59

Percentage : /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

- 1 (a P thymine; R thiamine/thiamin/thyamine
 - $\mathbf{Q}-\text{cytosine}$;
 - **R** guanine;
 - S uracil;

[4]

- (b) 1 copy of the, <u>DNA/gene</u>, (coding) for a, polypeptide/globin; A protein
 - 2 travels from, DNA/nucleus/chromosome, to ribosome;
 A mRNA made in nucleus, attached to ribosome so movement is implied
 - 3 for translation/for (haemo)globin production;
 - 4 mRNA codes for, <u>sequence</u>/<u>order</u>, of amino acids ; A for primary structure
 - 5 idea that (nucleotide/base) sequence is a series of codons;
 - 6 <u>base</u> pairing/AW, between <u>codon on mRNA and anticodon on tRNA</u>;

e.g. of

hydrogen bonds between bases examples of base pairing: A–U/C–G

R binding between bases

[max 3]

[Total: 7]

(a (i) hydrogen bonds drawn onto Fig. 6.1 lines must go between O-H, N-H as follows two lines between A and T H — O and N — H; three lines between C and G H — O and N — H and O — H; [2] (ii) hydrogen bonds hold (two), polynucleotides / strands / chains, together; A hold, (complementary) nucleotides / base pairs, together A ora e.g. prevents, unwinding / strand separation (many hydrogen bonds) give stability / DNA is stable molecule / DNA is long lasting / AW; ignore ref. to strength 3 can be broken for, transcription / replication; ref. to (double) helix; [2] (b) (named) base / nucleotide, pairing; 2 purine - pyrimidine; percentage of A = percentage of T; A very similar percentage of C = percentage of G; A very similar data quote in support; [max 3] (c) idea that percentages of, A and T / C and G, are not the same / three percentages are similar; [1] (ii) single-stranded DNA / not double-stranded / not a double helix; A may be other bases; [1] [Total: 9]

(a) one mark per complete correct row

DNA			
two, polynucleotides / chains / strands A double	single, polynucleotide / strand / chain		
(double) helix	not a helix / straight chain;		
deoxyribose	differences between pentoses / sugar may be described in terms of OH on C ₂		
thymine / no uracil	uracil / no thymine		
hydrogen bonding (between all bases)	hydrogen bonds between some bases A no hydrogen bonds		
ratio of A+G to C+T = 1 / AW	ratio of A+G to C+T varies		
longer	s		
one type	more than one type / three types / mRNA + tRNA + rRNA		

[max 3]

(b) (GCG) CGC; (ACA) UGU;

[2]

(c) 714;; A 717 / 720 if, no / incorrect, answer given, award one mark for correct working

[2]

- (d) 1 (tRNA) carries amino acid to ribosome;
 - 2 ref. to specificity of amino acid carried; A role in ensuring correct primary structure
 - 3 ref. anticodon (on tRNA): codon (on mRNA) binding;
 - 4 ref. complementary / base pairing; A A-U, C-G
 - 5 ref to tRNA binding sites within ribosome;
 - 6 two tRNAs bound to, mRNA / ribosome, at same time;
 - 7 amino acids held close to each other / AW;
 - 8 (for) peptide bond formation;
 - 9 (tRNA) can be reused / binds another amino acid;

[max 4]

[Total: 11]

4	(a)	interphase / S phase / synthesis phase ; R G1/G2 unqualified by interphase	[1]
	(b)	(i) <u>hydrogen</u> ;	[1]
		(ii) M = <u>adenine</u> and O = <u>cytosine</u> ;	[1]
	(c)	each strand, of DNA acts as a template (for the synthesis of a complementary strand); A described in terms of base pairing new DNA (molecule) has one, old / parental / original, strand and one, new / dau strand; R 'half old and half new' unless clearly referring to two strands	ighter [2]
	(d)	<pre>accept ora (errors are) mutations / named type of mutation; ora if corrected there are no mutations (may lead to) production of altered proteins, so, impaired / loss, of function; A altered amino acid in, protein / primary structure (may lead to) different antigens, so cells are rejected (by immune system); idea that cells cannot function together / impaired coordination; ref. to cancerous cells / cancer(s) / tumours / sickle cell anaemia or other named mono condition; further detail; e.g. uncontrolled, division / mitosis / cell replication / cell grow</pre>	
		e.g. lack of contact inhibition / no apoptosis or described / (proto)oncogene(s) [2	max]

CHEMISTRY ONLINE

[Total: 7]

5 **(a)**

Statement	
an amino acid that is a major constituent of collagen	J
a component of RNA	G ;
a molecule polymerised to form glycogen	D;
a molecule with a peptide bond	Н;
an important store of energy, insoluble in water	К;
a molecule with hydrophilic and hydrophobic regions	F;
an amino acid that forms disulfide (disulphide) bonds in proteins	Ε;

[6]

(b) Assume the answer is about DNA unless indicated otherwise. A comparison is not required. Information given below is for <u>either DNA or</u> collagen features. A ideas from either column. Do not penalise if points are not corresponding on one line / sentence as long as biologically correct. Only reject if biologically incorrect. If no attempt at 2 can A both marks from 1 if biologically correct.

DNA	Colla	
4 (different) monomers ;	more than four (different) monomers	
(monomers =) nucleotides / polynucleotides ;	(monomers =) amino acids / polypeptides	
double helix; A two strands	triple helix A three stands	
right handed helix ;	left handed helix	
loose helix;	tightly coiled	
sugar;	no sugar	
phosphate / phosphorus ;	no phosphate / phosphorus A sulfur (sulphur) present	
base(s);	no base(s)	
phosphodiester bonds;	peptide bonds	
antiparallel strands;	strands not antiparallel	

A sugar phosphate backbone for 2 marks if nothing written by 2.

[2]

[Total: 8]

6 (a) one mark per row

statement	protein	DNA	messenger RNA	cellulose
hydrogen bonds stabilise the molecule	✓	✓	х	✓ ;
glucose is the subunit molecule	X	x	x	✓ ;
subunits are joined by peptide bonds	✓	x	х	х ;
may be hydrolysed to amino acids	*	х	x	х ;
contains uracil	x	х	√	х ;

(b) CAG; [1]

(c) tRNA, combines with amino acid / carries amino acid to ribosome; idea of specificity; e.g. each type of tRNA is specific to an amino acid anticodon matches amino acid idea;

example from Fig. 3.1;

codon on messenger RNA pairs with anticodon on tRNA;

example from Fig. 3.1;

two sites on ribosome;

further detail; e.g. P and A site (and E)

leave ribosome after amino acid joins polypeptide;

continually reused;

(d) variable region;

binding region to antigen;

shape is specific to, choleragen / antigen;

complementary;

ref to R groups on amino acids (in polypeptide / protein);

different, sequences of amino acids / primary structures;

ref to, folding of the molecule / secondary structure / tertiary structure;

[max 3]

[max 5]

[5]

(e) poor sanitation / no treatment of faecal waste;

contamination of (drinking) water supply;

poverty / poor living conditions / poor hygiene / poor (health) education;

ref to natural disasters; e.g. assistance / aid / medical help / AW, cannot arrive in time

no rehydration therapy available (at time when needed);

no (effective) vaccine;

further detail; (bacteria live in gut, where immune system is not effective)

[max 3]

[Total: 17]