Protein synthesis

Mark Scheme 1

Level	International A Level				
Subject	Biology				
Exam Board	CIE				
Topic	Nucleic acids and protein synthesis				
Sub Topic	Protein synthesis				
Booklet	Theory				
Paper Type	Mark Scheme 1				

Time Allowed: 69 minutes

Score : /57

Percentage : /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a (late) interphase/phase/after G1 phase/before G2 phase; A after first growth phase/before prophase/before mitosis/after cytokinesis [max 1] (b) (i) hydrogen/H, (bonds); [1] (ii) Y, single ring structure; A smaller molecule compared to X [1] (c) (i) change in, nucleotide/base, sequence of DNA; any one from new allele fomed; deletion/substitution/addition/frame shift, (mutation); change to / altered, mRNA; A altered codon(s) (causing) change in, primary structure/amino acid sequence, of, polypeptide/protein; A different protein/altered function of protein/non-functional protein [max 2] (ii) cell cycle shorter/interphase shorter/division more frequent; (cell cycle) checkpoints not controlled; uncontrolled (growth/division)/AW; AVP; e.g. no differentiation (into epithelial cell) A no cell death/apoptosis 2] [Total: 7]

CHEMISTRY ONLINE

2 (a three from ;;;

allow mps without naming DNA / RNA if already gained in previous point must be comparison statement per row mark first comparison per row unless one row left blank

	DNA replication	DNA transcription		
1	DNA, formed / AW	mRNA / pre-mRNA (transcript) , (formed)		
2	two (identical) DNA molecules formed	one mRNA molecule (formed)		
3	product double-stranded DNA	product single stranded (m)RNA		
4	all of DNA molecule, replicated / unwinds / involved	part of DNA molecule / gene, involved		
5	both strands involved	one strand (involved) treat ref. to sense / antisense strands as neutral		
6	(involves / uses) DNA polymerase	RNA polymerase		
7	(free) DNA nucleotides, required / used	RNA nucleotides		
8	(process involves complementary) base pairing A–T ignore C–G	(complementary) base pairing A–U		
9	takes place in late interphase / S-phase / synthesis phase	takes place throughout interphase		
10	important in, cell division / mitosis / meiosis	for, polypeptide / protein, synthesis		

[max 3]

(b) change / alteration / AW, in sequence / order / arrangement, of, bases /nucleotides (of DNA / gene); change to give a new allele;

one additional detail; (may result in) altered, changed / non-functioning / no, polypeptide / protein ref. to changed genetic code / different codons different sequence of amino acids / different primary structure named type of mutation

[max 2]

(c) (i) ref. specificity; in context of the immune response qualified; e.g. existing, (B / T) lymphocytes / B-cells / T-cells, no longer activated / no recognition ora R if T lymphocytes produce antibodies existing plasma cells do not produce new antibody ora existing memory cells no longer activated / AW ora different / new, immune response required ora

[2]

example e.g. HbS

- (ii) artificial active / active artificial / active acquired artificial / acquired active artificial; [1]
- (d) penalise once if not worded as a problem
 - 1 ref. malnourishment / poor diet, vaccine ineffective / poor immune response / insufficient protein for antibody production;
 - 2 some (healthy) people do not respond to vaccines;
 - 3 one-dose not always effective / problems administering boosters; AW
 - 4 ref. percentage cover / herd immunity, insufficient; A description A idea of people in rural areas have less / no, access to vaccine A people avoid vaccine, worry about side-effects / other reason
 - 5 ref. cost to authorities; e.g. of, administering vaccination programme
 - 6 people in some areas cannot afford to buy vaccine
 - 7 vaccine may not be thermostable; AW
 - 8 high density of population / overcrowding, increases chance of spread; [max 2]

[Total: 10]

Dr. Asher Rana

```
(a (i) cells have machinery for protein synthesis/AW;
3
            A plant/animal, cells have RER
             (assumption that) cells will continue to produce protein at high rate;
            large number of/many/AW, ribosomes;
            available supply of/AW, amino acids;
            ref. to presence of tRNA molecules;
            ATP available;
                                                                                            [max 2]
            ref. to easier to harvest high levels of protein;
        (ii) idea that any added mRNA, has easier access to/can reach, ribosomes/RER;
            so that the cell's own, DNA/mRNA can be accessed/AW;
            easier to, harvest/extract, protein products;
                                                                                            [max 1]
       (iii) only the desired protein is produced/AW; ora
            unwanted protein does not have to be separated from desired protein;
            idea that inefficient process if translation machinery used to produce other proteins;
            cell's proteins may, inhibit/affect/hinder/AW, process;
                                                                                            [max 1]
       (iv) ref. to ribosome function not altered;
             R ref. to prokaryotic and eukaryotic ribosomes being the same
            mechanism of translation/described, is the same in all cells;
            e.g. tRNA can respond to introduced mR
            all types of cells use mRNA for protein synthesis;
            mRNA only has one role;
            genetic code/codons, are the same in all cells;
            A genetic code is universal
            mRNA, contains only exons/introns removed, so translation can occur;
                                                                                            [max 2]
    (b) different, structure/rRNA, (of ribosomes);
        (ribosomes), larger/80S, in eukaryotes or smaller/70S in prokaryotes;
        (some) attached to / AW, (eternal surface of) RER in eukaryotes; ora
        A only found in cytoplasm in prokaryotes
                                                                                            [max 2]
    (c) other organelles/components, damaged or whole cell all organelles intact;
        some, ribosomes/RER, lost/damaged;
        idea that cell-free system is disorganised; ora
        fewer amino acids available; ora
        no/reduced, respiration; AW
        other, components/AW, required are, lost/at lower levels;
        organelles/components, not replaced; ora
        ref. to difficulty in creating identical conditions to cell environment;
        may be able to use cells that can replicate (hence continuous production);
        AVP;
                                                                                            [max 1]
```

[Total: 9]

(a (i) no mark if no units used at all L - 3.6 kPa; award the mark if units only used once M - 4.5 kPa; **A** in range 4.45 to 4.55 [1] (ii) ignore any similarities to the right / lower (affinity) / qualified; e.g. lower percentage saturation at, higher / lower, partial pressures, small(er) difference in percentage saturation (than others); A ora comparative data quote ; must refer to L and M allow ecf from (i) [3] (b) at partial pressures in the tissues; where oxygen is unloaded from Hb haemoglobin is less saturated (than L); because, haemoglobin / Hb, dissociates more readily; A idea of unloading oxygen more readily even if Hb not mentioned to compensate for, fewer / less effective, red blood cells / Hb; [max 3] haemoglobin less well saturated (in lungs at high altitude); (c) data quote from Fig. 3.1; A 80-90% saturated at 'about 7.5 kPa' produce more red blood cells / increase in number of RBCs; more haemoglobin; idea of compensates for, smaller volume of oxygen absorbed / lower saturation (of haemoglobin); also accept the following adaptations increase in haematocrit / AW / decrease in plasma volume ; 6 A increase in RBCs per unit volume R decrease in blood volume increase in, breathing rate / tidal volume / heart rate / stroke volume; increase in, capillary density / number of mitochondria / myoglobin / respiratory enzymes, in muscle: ref. to (increased) secretion of, erythropoietin / EPO; 10 increase in (2,3), BPG / DPG, in red blood cells; A rightward shift in curve [max 4] (d) not caused by (named type of) pathogen / non-infectious / non-transmissible / noncommunicable / AW: 2 genetic / inherited / AW, disease; A caused by a mutation / AW A 'passed down from parent(s)'

[Total: 13]

[max 2]

3

affects all red blood cells so vaccine would lead to their destruction;

ref. to, no immune response / no antigen(s);

R idea of congenital diseases **R** 'you get it from your mother'

5	(a	(i)	DNA because RNA (has uracil) does not have thymine;	[1]
			Triva (nas dracii) does not have drynine,	ניו
		(ii)	phosphodiester;	[1]
		(iii)	deoxyribose;	[1]
	(b)	[max 2]		
((c)			
		1	loss of a water molecule / condensation reaction;	
	:	2 3 2/3	OH / O $^{-}$, from, carboxyl / -COOH / COO $^{-}$ (group) of one amino acid; H / H $^{+}$, from, amine / NH $_{2}$ / NH $_{3}$ $^{+}$ (group) of other amino acid; allow one mark for ref. to involvement of carboxyl and amine group	
		4	(peptide bond) links C-N;	[3]
				[Total: 8]

- 6 (a 1 important in contributing to 3-D structure of molecule / AW;
 - 2 many hydrogen bonds so, gives stability / strands not easily separated / long lasting ; AW
 - 3 (individual) hydrogen bonds (more) easily broken (than covalent bonds); **A** hydrogen bonds weak / hydrogen bonds can be broken

consequence

- 4 (so strands can be separated) for (DNA) replication; A description
- 5 (so strands can be separated) for (DNA) transcription; A description
- 6 hydrogen bonds only form between, specific bases / named base pairs, so, few mistakes / faithful replication / AW;
- 7 idea that hydrogen bonds can easily re-form (without chemical reaction); [max 4]
- (b) P = transcription
 Q = translation;
 [1]
- (c) (i) sequence will not (spontaneously) change / AW; A decreases chance of mutation (so) gene products / proteins, produced will always be functional; maintains all, genetic information / AW, throughout life of cell; same, genetic information / AW, passed on to, daughter cells / offspring; AVP; e.g. maintains size so still enclosed within nucleus [max 2]
 - (ii) translation / protein synthesis, will stop when mRNA breaks down;
 allows re-use of nucleotides (for other mRNA);
 ref. to control of gene expression; A prevents too much product forming
 ref. to control of cell activity / fast response to changing rquirements;
 ref. to efficiency in energy use;

[Total: 9]