Protein synthesis

Mark Scheme 2

Level	International A Level
Subject	Biology
Exam Board	CIE
Topic	Nucleic acids and protein synthesis
Sub Topic	Protein synthesis
Booklet	Theory
Paper Type	Mark Scheme 2

Time Allowed :	66 minutes	
Score		$/ 55$
Percentage :	$/ 100$	

Grade Boundaries:

A *	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

1 (a D-uracil;
E-adenine ;
F - ribose ; I pentose / sugar
G - phosphate ; A phosphate
(b) answers must be in pairs

mRNA	DNA
ribose	deoxyribose ;
differences between pentoses / sugar	may be described in terms of OH on C2
uracil / no thymine	thymine / no uracil ;
single, polynucleotide / strand / chain	two, polynucleotides / chains / strands ; A double
no hydrogen bonds	hydrogen bonding ;
not a helix / straight chain	(double) helix ;
ratio of A+G to C+T varies / AW	ratio of A+G to C+T = 1 / AW ;
no base pairing (within molecule)	base pairing ;
base pairing A-U with, tRNA / anticodon	base pairing is A-T
shorter	longer ;
found in cytoplasm / leaves nucleus	found in nucleus ;
attached to ribosome(s)	not attached to ribosome(s) ;
short-lived	long-lived ;
transfer of information (to ribosome)	information storage / AW ;
codes for one polypeptide	codes for more than one polypeptide ;
produced by transcription	produced by (semi-conservative) replication

(c) 1 translation ; R if transcription given as well, unless in correct context A use of, nucleotide / base, sequence, to make, amino acid chain / polypeptide / protein I protein / polypeptide, synthesis moves towards / combines with, ribosome ;
3 ref to small and/or large sub-units ; I small / large ribosome
4 codon(s) ; only accept in correct context
5 transfer / t, RNA, bringing, amino acid(s), to mRNA / ribosome ;
6 anticodon(s) ; only accept in correct context
7 (complementary) base pairing ;
8 any e.g. of codon:anticodon base pairing ; need six bases
9 ref to polyribosome(s) / used by many ribosomes ;
10 (mRNA short-lived) ref to production of protein for short period of time ;

2 (a (i) A transcription;
B tRNA / transfer RNA;
C ribosome; A subunit of ribosome / ribosomal subunit treat 70S / 80S or small / large as neutral
D anticodon;
(ii) similarities
made of amino acids / amino acid monomers / polymer of amino acids A protein / polypeptides
have quaternary structure / have more than one polypeptide chain ;
four, sub-units / polypeptides;
haem / porphyrin / prosthetic group(s) ;
difference
(four) sub-units / polypeptides, are identical ;
or
haemoglobin has, two different, sub-units / polypeptides ;
or
haemoglobin has alpha and beta polypeptides ;
(catalase) has active site(s); A Hb has (oxygen) binding site
(iii) each, sub-unit / polypeptide, has an active site ;
catalase has four, active sites / haem groups ;
(b) iodine in potassium iodide solution / iodine in KI solution / I in KI solution; \mathbf{A} iodine solution \mathbf{R} iodine

Benedict's, solution / reagent; A Benedict's
A Fehling's solution / NaOH and CuSO_{4}
treat refs to colour changes as neutral
[Total: 10]

Question Expected Answers

(a) (i) A transcription; (ignore mRNA synthesis)

B translation;
C exocytosis; \mathbf{R} secretion
(ii) D (sub unit of) ribosome

E Golgi apparatus/body;
(iii) $\mathbf{F} \quad \mathrm{mRNA}$;
(b) active site;
(is) specific shape; \mathbf{A} complementary/other amino acids are the wrong shape to fit, \mathbf{R} same shape
only accepts R groups of these two amino acids; \mathbf{R} accepts peptide bond
(c) correct bond broken (between C-N);
involvement of water molecule in breaking the peptide bond shown clearly;
two amino acids with free groups as follows
$-\mathrm{COOH} /-\mathrm{COO}$ and $-\mathrm{NH}_{2} /-\mathrm{NH}_{3}{ }^{+}$;
A from diagram(s).
(b) accept glycine-valine or valine-glycine
peptide bond drawn correctly ;
amino and carboxylic acid ends shown ;
correct R-groups ;
water eliminated ;
(c) (i)

AAG $\} ;$
(ii) messenger;
(d) during systole semi-lunar valve is open ;
during diastole semi-lunar valve is closed;
proximity/AW pulmonary artery to (right) ventricle (so no pressure lost) ; elastic recoil of pulmonary artery maintains blood pressure/AW ; no/little blood in (right) ventricle, after contraction/during diastole ; fills with blood at low pressure ;
(e) increase in power of contraction ; AW increase in (systolic) blood pressure ; strain on right ventricle/right ventricle does not function efficiently ; growth of muscle in/right ventricle increases in thickness ; insufficient oxygen to, heart/cardiac, muscle ; heart failure/heart attack ;
(f) persistent/AW, cough ;
cough produces much mucus ;
wheezing;
rapid breathing/difficulty breathing/breathlessness ;
bluish colour to the skin ;
recurrent chest infections/frequent colds or flu/AW ;
barrel-shaped chest ;
chest pains; \mathbf{R} heart pains
fatigue/weakness, (with exercise);

5 (a (i) GTG;
ACU ;
leu;
(ii) primary structure ;
(b) 1 mutation;

2 base substitution/T $\rightarrow A$ in template strand of DNA/AW ;
transcription
3 DNA has CAC as $6{ }^{\text {th }}$ triplet ;
4 (so) mRNA has GUG as ($\left.6^{\text {th }}\right)$ codon ;
allow one mark for altered mRNA codon if no marks gained for mps 3 and 4

translation

5 different tRNA involved/tRNA specific to val and not glu ;
6 anticodon on IRNA has CAC (with valine) ;
7 tRNA brings, incorrect amino acid/val, to ribosome ;
8 further detail ; e.g. incorrect amino acid incorporated into growing polypeptide chain

