Protein synthesis

Mark Scheme 4

Level	International A Level
Subject	Biology
Exam Board	CIE
Topic	Nucleic acids and protein synthesis
Sub Topic	Protein synthesis
Booklet	Theory
Paper Type	Mark Scheme 4

Time Allowed:	56 minutes
Score :	$/ 46$
Percentage :	$/ 100$

Grade Boundaries:

A *	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

1 (a) 1 code is three, bases / nucleotides; A triplet code

12a AVP ; e.g. protein produced, is non-functional / not produced / incomplete
(b) 13 individuals in population have great reproductive potential / AW ;

14 numbers in population remain roughly constant ;
15 variation in members of population;
16 environmental factors / named factor (biotic or abiotic) ; linked to 17 and 18
17 (cause) many, fail to survive / die / do not reproduce ;
18 those best adapted survive / survival of the fittest ;
19 (reproduce to) pass on alleles; \mathbf{R} genes
20 genetic variation leads to change in phenotype ;
21 ref: changes in, gene pool / allele frequency;
22 over time produces evolutionary change;
23 new species arise from existing ones / speciation ;
24 directional / stabilising, selection;
(a) primary
sequence / arrangement / order / AW, of amino acids ;
secondary
α, helix / helices ; A description ignore any ref to β / pleated, sheet
tertiary
folding of, one / each, polypeptide / globin ; A coiling
(shape) held in place by interactions between, R-groups / side chains ;
A three or more named interactions
quaternary
(arrangement / interaction, of) four polypeptides / four globins / two α and two β globins ; A chains \mathbf{A} ref. to more than one polypeptide if specific ref. to α and β chains
haem / prosthetic group ; A porphyrin
(b) six / first five and seventh, amino acids are the same ; ora amino acid at position 6 is different
both are 1. val-2.his-3.leu-4.thr-5.pro....7.glu ; take from diagram variant 1 is, glutamic acid / glu (whereas), variant 2 is, valine / val ;
(c) (i) withstands pressure; prevents, overstretching / AW ; prevents, bursting / rupture / AW ;
(ii) assume answer is about collagen unless told otherwise

1 polypeptides are not identical (v. 2 identical, α / β, polypeptides) ;
2 triple helix or three, polypeptides / helices (v. 4 polypeptides);
3 only composed of amino acids or no, prosthetic group / haem / iron ;
4 (fibrous so) not globular ;
5 no complex folding / AW (v. complex folding); A no tertiary structure
6 glycine is repeated every 3rd position / more glycine ;
7 repeating triplets of amino acids / large number repeating amino acid sequences (v. greater variety) ;
8 AVP ; e.g. different primary structure / AW variation in amino acid sequences (v specific sequences) all polypeptides, helical / AW (v. a different to β, polypeptides) hydrogen bonds between polypeptides (v. Van der Waals) covalent bonds between molecules (to form fibrils) (v. none) 300nm long polypeptides (v 5-10nm) each polypeptide over 1000 amino acids (each 141 / 146 amino acids) [max 1]
[Total: 9]

3 (a) allow points on annotated diagram
if only diagram drawn, max 1 mark if not annotated
if written response given, only use diagram (if correct) to confirm mark points
$\begin{array}{lll}\mathbf{1} & 6 \text { carbons ; (v. } 5 \text { carbons) } & \text { A } 1 \text { more } \\ \mathbf{2} & 6 \text { oxygens ; (v 4) } & \text { A } 2 \text { more } \\ \mathbf{3} & 12 \text { hydrogens ; (v10) } & \text { A } 2 \text { more } \\ \mathbf{4} & 5 \text { OH groups } v 3 \text { OH groups ; } \\ \mathbf{5} & 6 \text {-membered ring / pyranose ; (v. } 5 \text {-membered ring / furanose }) \\ \mathbf{6} & \text { carbon 2, OH (pointing down) / has O ; (v. H pointing down / no O) AW } \\ \mathbf{7} & \mathrm{H} \text { and OH other way round on carbon } 1 \text {; AW } \\ \mathbf{8} & \mathrm{H} \text { and OH other way round on carbon } 3 \text {; AW }\end{array}$
(b)

type of bond(s)	biological macromolecule
$\beta, 1-4$ glycosidic	cellulose ;
$\alpha, 1-4$ and $\alpha, 1-6$ glycosidic	amylopectin ;
phosphodiester	mRNA ;
peptide	protein ;

\mathbf{R} if more than one molecule in box
(c) condensation / polymerisation / esterification;
(d)

	replication	transcription
1	DNA polymerase	RNA polymerase ;
2	(free activated) DNA nucleotides	RNA nucleotides ;
3	(complementary) base pairing A-T	base pairing A-U ;
4	both strands, involved / act as template / AW	one strand involved;
5	all / AW, the DNA molecule, is copied / unzips / AW	part / gene(s), copied ;
6	(two) DNA molecules produced A DNA produced	messenger RNA / mRNA / pre-mRNA , produced ;
7	molecule(s) produced are double-stranded	single-stranded molecule produced;
8	occurs, in late interphase / S-phase / prior to mitosis	occurs throughout interphase / AW ;
9	important in, mitosis / meiosis A cell / nuclear, division	important in, protein / polypeptide, synthesis ;
10	AVP ; e.g. Okazaki fragments / breaking and joining (of DNA) required	mRNA produced as continuous molecule

[Total: 12]

4 (a) (i) box drawn round one phosphate, sugar and base ;
(ii) label P to circle; A phosphate / no label but clear a circle is intended
(b) 1 DNA (double helix), unwinds / AW ; A uncoil

2 hydrogen bonds between (complementary) bases broken ;
ignore DNA unzips
3 complementary, base / nucleotide, pairing ; A A-T and C-G
4 phosphodiester bonds;
5 both strands used as templates; A both strands are copied
6 produces two identical DNA molecules ; A 'DNAs’
7 semi-conservative / each new DNA = one 'old' and one 'new' strand ;
8 ref to DNA polymerase ;
9 correct ref to other named enzyme ; e.g. helicase (unwinds), topoisomerase (cuts backbone), ligase (formation of phosphodiester bonds)
10 ref to Fig. 5.1; e.g. described dotted lines as H bonds that need to be broken look for annotations on Fig. 5.1
11 AVP ; e.g. replication fork(s), replication bubble(s), antiparallel nature, Okazaki fragments, activated nucleotides (3 phosphate groups)
(c) 1 tRNA carries amino acid to ribosome ;

2 ref to specificity of amino acid carried;
3 anti-codon on tRNA complementary to codon on mRNA ;
A example for complementary, e.g. AUG and UAC
4 ref to two sites / P(eptidyl) and A (mino-acyl) sites, of ribosome ;
5 peptide bond is formed between amino acids ; R 'polypeptide bond'
6 tRNA, can be re-used / collects another amino acid ;

