Protein synthesis

Mark Scheme 5

Level	International A Level				
Subject	Biology				
Exam Board	CIE				
Topic	Nucleic acids and protein synthesis				
Sub Topic	Protein synthesis				
Booklet	Theory				
Paper Type	Mark Scheme 5				

Time Allowed: 68 minutes

Score : /56

Percentage : /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

- 1 (a) 1. low oxygen (in water) results in anaerobic respiration;
 - 2. (anaerobic respiration) produces alcohol;
 - rice tolerant to alcohol;
 - 4. (because rice has) high levels of, alcohol dehydrogenase / enzyme that breaks down alcohol;
 - 5. presence of, aerenchyma / described;
 - 6. allows, oxygen / air, to reach roots (from aerial tissues);

[3 max]

- (b) (i) 1. (immersion in water) stimulates production of ethene;
 - 2. (concentration of) ethene produced increased with time (after submergence);
 - 3. very little difference in ethene production between T65 and C9285;
 - 4. use of figures; 2 values of ethene plus 2 values of time for either T65 or C9285

[2 max]

- (ii) 1. in T65 ethene does not affect internode elongation **but** in C9285 ethene promotes internode elongation;
 - 2. in C9285, greater concentrations of ethene cause greater elongation;
 - 3. use of comparative figures to support mark point 1 **or** mark point 2; both units at least once [2 max]
- (c) 1. SK genes present in C9285 / SK genes not present in T65;
 - 2. increased production of GA in C9285 / little or no increased production of GA in T65;
 - 3. GA stimulates, stem elongation / AW;
 - 4. AVP; e.g. T65 has no receptors for ethene

[3 max]

- (d) (i) SK2 more important; ora
 - O. nivara has mutated SK2 and does not have deepwater response or
 - O. glumaepatula has SK2 but not SK1 and does have deepwater response;
 - (ii) 1. (addition / insertion), of a, base / nucleotide, to DNA / to a gene;
 - 2. changes a, sequence of three bases / triplet / codon; ignore ref. to frame shift
 - 3. (triplet) no longer codes for an amino acid;

[2 max]

[2]

- (iii) 1. breed deepwater variety with (high-yielding) non-deepwater variety;
 - 2. identify / select, offspring with both deepwater response and high yield;
 - 3. breed selected offspring (with **both** deepwater response and high yield);
 - 4. continue for many generations;

[Total: 17]

[3 max]

- (amino acid) code is three, bases / nucleotides; A triplet code 2 **(a)** 1.
 - (gene) mutation; **R** chromosome mutation
 - base / nucleotide, substitution / addition / deletion
 - addition / deletion, has large effect (on amino acid sequence);
 - frame shift; 5.
 - completely new code after mutation / alters every 3 base sequence which follows;
 - substitution may have little or no effect / silent mutation;
 - different triplet but same amino acid / new amino acid in non-functional part of protein;
 - substitution may have big effect (on amino acid sequence);
 - 10. could produce 'stop' codon;
 - 11. sickle cell anaemia / PKU / cystic fibrosis;
 - 12. reference to transcription or translation in correct context; A description [8 max]
 - (b) 13. (haemophilia) allele on X chromosome; A gene
 - 14. sex-linked;
 - 15. (haemophilia) allele recessive;
 - 16. man, homogametic / has one X chromosome;
 - 17. Y chromosome does not have blood clotting gene;
 - 18. only daughter(s) get his X chromosome;
 - 19. daughter(s) carrier(s) of (haemophilia) allele;
 - 20. grandson(s) 50% chance of having, (haemophilia) allele / haemophilia;
 - 21. granddaughter(s) 50% chance of carrying, (haemophilia) allele;
 - allow following marks from diagram
 - 22. correct symbols; e.g. XH and Xh explained
 - 23. man's genotype ; e.g. XhY ignore partner's genotype
 - 24. F1 (daughter's) genotype; e.g. X^HX^h ignore her partner's genotype 25. F2 (grandson's) genotypes; e.g. X^hY X^HY both required

 - 26. F2 (granddaughter's) genotypes; e.g. X^HX^H X^HX^h both required **or** X^hX^h X^HX^h [7 max]

[Total: 15]

(i) A 3 protein ; *ignore protein descriptions* **R** glycoprotein **R** lipoprotein (1) [2] (ii) polar / hydrophilic, head / group; attracted to / AW, water / aqueous environment; A water-loving ref. hydrogen bonding (polar head to water); non-polar / hydrophobic / hydrocarbon / fatty acid, tails / chains / groups ; repelled by / away from, water / aqueous environment; AW R water-hating [max 3] (b) C any one of (channel) allows, ions / water / polar molecules / water-soluble molecules / hydrophilic molecules, to, pass through membrane / enter cell / leave cell; R transport, without qualification e.g. across, through facilitated diffusion; active transport; (max 1) any one relevant e.g. cellular recognition cell identification antigen cell signalling receptor binding site ref to hydrogen bonding with water / forms bond with water to stabilise membrane cell adhesion (max 1) [2] (c) 1764;; if correct working (588 × 3) is shown, but no answer or incorrect answer, award one mark [2] [Total: 9]

phospholipid; (1)

```
prophase 1
1
     idea of condensation of chromosomes;
2
     homologous chromosomes pair up / bivalent formed;
metaphase 1
3
     homologous chromosomes / bivalents, line up on equator;
4
     of spindle;
5
     by centromeres;
6
     independent assortment / described;
7
     chiasmata / described;
8
     crossing over / described;
anaphase 1
9
     chromosomes move to poles;
10
     homologous chromosomes / bivalents, separate;
11
     pulled by microtubules;
12
     reduction division;
metaphase 2
13
     chromosomes line up on equator;
14
     o spindle;
anaphase 2
15
     centromere divide;
16
     chromati move to poles;
17
     pulle by microtubules;
18
     ref. haploid number;
```

do not credit marking points out of sequence

(a)

4

[9 max]

allow 4 **or** 14 allow 11 **or** 17

- (b) 19 change in, base / nucleotide, sequence (in DNA);
 - 20 during DNA replication;
 - 21 detail of change; e.g. base, substitution / addition / deletion
 - 22 frame shifts / AW;
 - 23 different / new, allele;
 - 24 random / spontaneous;
 - 25 mutagens;
 - 26 ionising radiation;

27UV radiation / mustard gas;

[6 max]

[Total: 15]

