## Structure of transport tissues

## Mark Scheme 2

| Level      | International A Level          |  |  |  |  |
|------------|--------------------------------|--|--|--|--|
| Subject    | Biology                        |  |  |  |  |
| Exam Board | CIE                            |  |  |  |  |
| Topic      | Transport in plants            |  |  |  |  |
| Sub Topic  | Structure of transport tissues |  |  |  |  |
| Booklet    | Theory                         |  |  |  |  |
| Paper Type | Mark Scheme 2                  |  |  |  |  |

Time Allowed: 58 minutes

Score : /48

Percentage : /100

## **Grade Boundaries:**

| A*   | Α      | В   | С     | D     | E   | U    |
|------|--------|-----|-------|-------|-----|------|
| >85% | '77.5% | 70% | 62.5% | 57.5% | 45% | <45% |

```
(a) 9 \mu m;
    award one mark if 8.9 or 9.1µm given
    correct measurement is divided by the magnification (x 10 000) but conversion factor
    incorrect
                                                                                              [2]
(b) explanation to max 4
    hydrogen ion / H<sup>+</sup>, pumped / AW, out of, transfer cell / companion cell;
         R if to sieve tube element
    active / using ATP / energy requiring;
    hydrogen ion gradient build-up; AW
    hydrogen ions, co-transport / with / AW, sucrose; in context of into, transfer /
         companion cells
    diffusion / facilitated diffusion (of hydrogen ions and sucrose) through co-transporter
         (membrane protein);
         A through membrane protein if 'cotransport' already used
    sucrose, diffuses / AW, through plasmodesmata into sieve tube element;
    ref. to Fig. 5.1
    mitochondria for ATP production;
    ref to infoldings of cell wall;
    large surface area of cell membrane;
    for more, protein pumps / co-transporter proteins;
                                                                                         [max 5]
(c) sucrose / assimilates / phoem sap, in sieve tube (elements) in, source / leaf
    low(ers) / less negative, water potential;
    water enters, qualified; e.g. by osmosis / from surrounding tissue;
    increases the hydrostatic pressure;
    sucrose unloaded at sink;
    lowers water potential in surrounding tissue;
    water moves out and decreases hydrostatic pressure (in source);
        hydrostatic not used
    pressure difference (causes flow);
    (pressure difference) forces sap through sieve tubes / causes mass flow (towards
        sink); AW
                                                                                         [max 4]
                                                                                      [Total: 11]
```

1

2 (a) line to nucleolus labelled C; line to Golgi apparatus labelled D; R to vesicle

line to mitochondrion labelled E;

[3]

- (b) 1 hydrogen ion / H<sup>+</sup>, pumped / AW, out of companion cell; **R** if to sieve tube element
  - 2 active / using ATP / energy requiring;
  - 3 against the concentration gradient;
  - 4 hydrogen ion gradient build-up; AW
  - 5 hydrogen ions, co-transport / with / AW, sucrose; in context of into companion cells
  - 6 <u>diffusion / facilitated diffusion</u> (of hydrogen ions and sucrose) through co-transporter (membrane protein); **A** through membrane protein *if 'cotransport' already used*
  - 7 <u>diffusion</u> of sucrose into (phloem) sieve tube (cell);
  - 8 via plasmodesmata;

[max 4]

[Total: 7]



(a) H<sup>+</sup> pumped out; 3 creates an H<sup>+</sup> gradient; sucrose moves in with H<sup>+</sup> co-transport / through co-transporter; energy / ATP, provided by mitochondria; sucrose diffuses down concentration gradient: [4 max] through plasmodesmata; **(b)** large surface area : volume ratio / to <u>increase</u> surface area ; gives large surface area of membrane; (so) many, pumps or co-transporters; [2 max] (c) (i) higher / greater resolution / resolving power; ora **A** 0.5 nm (0.0005 μm) compared with 200 nm (0.02 μm) because of shorter wavelength; A smaller more detail can be seen / much clearer (at the same magnification) / can see two points that are close together; can see cell structures that are not visible in the LM; A e.g. ribosomes / membranes can see detail of structures just visible in LM with e.g.; A mitochondrion / chloroplast [2 max] (ii) long (length greater than width); sieve plates; sieve pores; some / less / peripheral, cytoplasm; no nucleus / fewer mitochondria / less ER; thin wall; [2 max]

CHEMISTRYONLINE

[Total: 10]

4 (a nucleus/nuclear membrane/nuclear envelope/nucleolus;

ER/SER/RER:

Golgi (body/apparatus)/lysosomes;

larger ribosomes/80S ribosomes;

linear DNA/chromosomes/protein + DNA (in chromosomes):

mitochondrion/mitochondria;

cell wall made of cellulose; R cell wall unqualified

microtubules; A spindle fibres/centriole

large vacuole/tonoplast;

plasmodesmata;

[max 3]

(b) high(er) resolution;

because of shorter wavelength;

more detail can be seen/much clearer, <u>at the same magnification</u>/can see two points that are close together/quote appropriate figs;

can see cell structures, that are not visible in the LM/

A e.g. ribosomes/membranes;

can see detail of structures just visible in LM with e.g.

A mitochondrion/chloroplast;

[max 2]

(c) nitrogen fixation; A fixes nitrogen

converts nitrogen to ammonia; A NH<sub>3</sub>/NH<sub>4</sub><sup>+</sup>

further detail; e.g. nitrogenase/anaerobic conditions/ATP needed/H<sup>+</sup> needed

ammonia converted to amino acid(s);

(amino acids) exported to cells of legume;

in return for carbohydrate/sugars/sucrose/glucose/fructose;

symbiosis/mutualism;

helps legume survive in areas with low, N/nitrates;

A competitive advantage

[max 3]

(d) they have the same/similar function, to combine with oxygen; idea of similar/same, primary sequence/sequence of amino acids;

idea of same/similar, tertiary structure/3D shape; A quaternary

common ancestry/both are eukaryotes, because they share some of the same genes;

[max 2]

[Total: 10]

| 5   | (a) | (i) A - Golgi (body/apparatus)/dictyosome; R Golgi vesicles                                                                                                                 |    |  |  |  |  |
|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| (b) |     | <b>B</b> - (rough) endoplasmic reticulum/ER/RER; <b>R</b> SER                                                                                                               |    |  |  |  |  |
|     |     | C - mitochondrion/mitochondrial, matrix/envelope;                                                                                                                           | 3  |  |  |  |  |
|     |     | (ii) sieve plate(s);                                                                                                                                                        | 1  |  |  |  |  |
|     |     | (iii) sucrose/amino acid(s)/named amino acid; R sugar, glucose                                                                                                              | 1  |  |  |  |  |
|     | (b) | little/watery/peripheral, cytoplasm/no tonoplast/no vacuole/ few organelles/few ribosomes/so little resistance/AW e.g. easy transport/move more easily/minimum obstruction; |    |  |  |  |  |
|     |     | <u>pores</u> in sieve plate provide little resistance/permit continuous flow/allows movement/AW e.g. as above;                                                              |    |  |  |  |  |
|     |     | sieve plate braces/prevents cell bulging under pressure/collapsing;                                                                                                         |    |  |  |  |  |
|     |     | plasmodesmata only between sieve tube element and companion cell allows pressure to build up;                                                                               |    |  |  |  |  |
|     |     | plasmodesmata allows loading/AW e.g. sucrose to be transported in from companion/transfer cell;                                                                             |    |  |  |  |  |
|     |     | (strong) cellulose walls prevent, excessive/too much, bulging/expansion;                                                                                                    |    |  |  |  |  |
|     |     | mitochondria (and starchy plastids) for ATP, for repair/maintenance;                                                                                                        |    |  |  |  |  |
| (c) |     | R reference to mitochondria in companion cells 3 max                                                                                                                        |    |  |  |  |  |
|     |     | sucrose/sugars/assimilates, are <u>pumped/loaded</u> (by companion cells);                                                                                                  |    |  |  |  |  |
|     |     | reference to pumping H <sup>+</sup> ;                                                                                                                                       |    |  |  |  |  |
|     |     | reference to co-transport/AW e.g. H <sup>+</sup> carry sucrose with them;                                                                                                   |    |  |  |  |  |
|     |     | mitochondria provide, ATP for active transport;                                                                                                                             |    |  |  |  |  |
|     |     | [Total 1                                                                                                                                                                    | 0] |  |  |  |  |