Transport mechanism

Mark Scheme 4

Level	International A Level
Subject	Biology
Exam Board	CIE
Topic	Transport in plants
Sub Topic	Transport mechanism
Booklet	Theory
Paper Type	Mark Scheme 4

Time Allowed: 76 minutes

Score : /63

Percentage : /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

(because) more, (symplast) pathways/passages/AW; accept in context of blockage of some plasmodesmata

correct ref. to symplast pathway in context of an advantage;

e.g. of complex plasmodesmata; from companion cell into sieve tube (elements)/when loading sucrose into phloem

AVP; e.g. selectivity/control/regulation, of movement

[max 2]

- (b) 1 mass flow; A pressure flow
 - 2 sucrose/solutes/assimilates/sugars, decreases, water potential/solute potential; $\bf A$ symbol(s) $\bf \Psi$
 - 3 water enters (sieve tubes), down water potential gradient/by osmosis;
 - 4 increase in/high(er), hydrostatic pressure;
 - 5 unloading/removal, of sucrose at the sink lowers the (hydrostatic) pressure;
 - 6 movement (from source to sink) is by gradient in (hydrostatic) pressure;

[max 4]

[Total: 6]

2	(a	sto	mata in, pits/cavities/chambers/crypts; I sunken stomata			
		no	stomata on upper surface ;			
		few	v stomata ;			
		hai	rs/trichomes;			
		thic	ck (waxy) cuticle ;			
		thic	ck walled epidermal cells;			
		se\	veral layers of, upper epidermis / hypodermis ;	[max 3]		
	(b)	300	O ;;			
		(18 000/60 or 19 000/60 or 20 000/6)				
		allow one mark if correct measurement is divided by magnification but incorrect conversion factor is used if answer not to nearest $100\mu\mathrm{m}$				
	(c)	1	loss of water vapour from, leaves/aerial parts of the plant;			
		2	water evaporates from, walls/surface, of mesophyll cells;			
		3	into air spaces;			
		4	water vapour diffuses(out to atmosphere); A water if mp2 awarded			
		5	through open stomata (to atmosphere);			
		6	down a water potential gradient ;			
			A idea that water potential gradient established	[max 4]		
				[Total: 9]		

- 3 (a (i) no mark if no units used at all
 - L − 3.6 kPa; award the mark if units only used once

M - 4.5 kPa; **A** in range 4.45 to 4.55

[1]

- (ii) ignore any similarities
 - 1 to the right / lower (affinity) / qualified; e.g. lower percentage saturation
 - at, higher / lower, partial pressures, small(er) difference in percentage saturation (than others); A ora
 - 3 comparative data quote; must refer to L and M allow ecf from (i)

[3]

- **(b)** at partial pressures in the tissues; where oxygen is unloaded from Hb
 - 2 haemoglobin is less saturated (than L);
 - because, haemoglobin / Hb, dissociates more readily;
 A idea of unloading oxygen more readily even if Hb not mentioned
 - 4 to compensate for, fewer / less effective, red blood cells / Hb;

[max 3]

- (c) haemoglobin less well saturated (in lungs at high altitude);
 - 2 data quote from Fig. 3.1; A 80–90% saturated at 'about 7.5 kPa'
 - 3 produce more red blood cells / increase in number of RBCs;
 - 4 more haemoglobin;
 - 5 idea of compensates for, smaller volume of oxygen absorbed / lower saturation (of haemoglobin);

also accept the following adaptations

- 6 increase in haematocrit / AW / decrease in plasma volume;
 - A increase in RBCs per unit volume
 - R decrease in blood volume
- 7 increase in, breathing rate / tidal volume / heart rate / stroke volume;
- 8 increase in, capillary density / number of mitochondria / myoglobin / respiratory enzymes, in muscle;
- 9 ref. to (increased) secretion of, erythropoietin / EPO;
- 10 increase in (2,3), BPG / DPG, in red blood cells ; A rightward shift in curve [max 4]
- (d) not caused by (named type of) pathogen / non-infectious / non-transmissible / non-communicable / AW;
 - 2 genetic / inherited / AW, disease ; A caused by a mutation / AW
 - A 'passed down from parent(s)'
 - R idea of congenital diseases
 - R 'you get it from your mother'
 - **3** ref. to, no immune response / no antigen(s);
 - 4 affects all red blood cells so vaccine would lead to their destruction; [max 2]

[Total: 13]

Dr. Asher Rana

4	(a	(1)	G;	Ľ1.
		(ii)	B/C;	[1]
		(iii)	A/F;	[1]
		(iv)	B;	[1]
		(v)	D;	[1]
	(b)	1 2 3 4 5	nitrogen and hydrogen/substrates, bind to/AW, active site; enzyme-substrate complex (forms); ref. lock and key/induced fit, mechanism; activation energy of reaction is lowered; example of how activation energy lowered; e.g. strain on (triple) bond of, N_2 / (di)nitrogen A bond broken between nitrogen (atoms) nitrogen and hydrogen ions held close together for bond formation transfer of electrons alternative pathway	
		6	product/NH ₄ ⁺ , leaves active site ;	
		7 8	ATP, required/used/provided from respiration; ref. anaerobic conditions for enzyme action;	
		9	suggestion as to use of, vanadium/molybdenum, in active site; e.g. act as cofactor/coenzyme transfer of, electrons/protons	4]

- (c) 1 concentration of all the ions is greater in the root tissue than in the solution; ora A roots
 - 2 comparative data quote;

according to these data

- 3 (so) ions will not diffuse into the root tissue;
 - A if (facilitated) diffusion only, initially/till equilibrium reached
- 4 (so) active transport; A active, uptake/pumping I facilitated diffusion
- 5 use ATP; A energy
 - R ATP energy
- 6 move ions, against concentration gradient/from low to high concentration;
 A diffusion gradient
- 7 use, membrane/integral/intrinsic/transmembrane/transport/carrier, proteins; R channel proteins
- 8 are specific/have specific binding sites;
- 9 involve, conformational/shape, change;
- 10 comparative data quote to suggest that some ions are pumped more than others ; e.g. steepest gradients for K^+ and SO $_4^-$
- 11 phospholipid bilayer/hydrophobic core (of cell surface membrane) is impermeable to ions:
- 12 so ions cannot diffuse out/(membrane) proteins only allow inward flow of ions;
- 13 AVP; e.g. suggestion of differing numbers of specific membrane proteins to explain observation of mp 10 [max 5]

[Total: 14]

CHEMISTRY ONLINE

5 **(a** (×) 400 ;;

if answer incorrect or not to nearest 100 allow one mark for correct working e.g. (scale bar) 19 000–21 000 divided by award max one mark if a unit (e.g. μm) is included

[2]

- (b) 1 thick(ened) / lignified, walls prevent, collapse;
 - ignore strenghtened

A withstands, compression / negative pressure ignore bursting

- 2 lignified (wall), prevents leakage / provides waterproofing;
- 3 cellulose, wall / lining, allows adhesion of water (molecules);
 A hydrogen bonding / hydrophilic
- 4 (relatively) large diameter / large cross-sectional area / wide / large lumen;
- 5 hollow / empty / no contents / no cytoplasm;
- 6 no end walls / continuous 'tubes' / AW;
- 7 elongated;

A if referenced to cells or vessels A cells end to end (to make tubes) only allow mps 4–7 in terms of ease / efficiency of water movement mp 4 e.g. more space allows a greater volume to flow / greater volume per unit time or mp 5–6 e.g. minimal resistance to flow, allows unimpeded flow, allows free flow of water

8 pits / pitted walls, to allow lateral movement;

R pores [max 3]

- (c) 1 water moves, down a <u>water potential</u> gradient / from a high(er) water potential to a low(er) water potential, accept ψ for water potential;
 - 2 apoplast pathway, described / used in correct context;
 - 3 symplast pathway, described / used in correct context;
 - 4 evaporation from mesophyll cell walls;

A surface of mesophyll cells

- 5 into air space(s);
 - must be linked to evaporation / water vapour
- 6 water vapour diffuses (out);

accept if no vapour but follows from evaporation

- 7 out / through / via stoma(ta);
 - R 'evaporates from the stomata'
- 8 **AVP**; ref. to water leaves unlignified terminals of xylem vessels

[max 5]

[Total: 10]

6	(a)	(i) A - Golgi (body/apparatus)/dictyosome; R Golgi vesicles	
		B - (rough) endoplasmic reticulum/ER/RER; R SER	
		C - mitochondrion/mitochondrial, matrix/envelope;	3
		(ii) sieve plate(s);	1
		(iii) sucrose/amino acid(s)/named amino acid; R sugar, glucose	1
	(b)	little/watery/peripheral, cytoplasm/no tonoplast/no vacuole/ few organelles/few ribosomes/so little resistance/AW e.g. easy transport/move more easily/minimum obstruction;	
		<u>pores</u> in sieve plate provide little resistance/permit continuous flow/allows movement/AW e.g. as above;	
		sieve plate braces/prevents cell bulging under pressure/collapsing;	
		plasmodesmata only between sieve tube element and companion cell allows pressure to build up;	
		plasmodesmata allows loading/AW e.g. sucrose to be transported in from companion/transfer cell;	
		(strong) cellulose walls prevent, excessive/too much, bulging/expansion;	
		mitochondria (and starchy plastids) for ATP, for repair/maintenance;	
		R reference to mitochondria in companion cells 3 m	ах
	(c)	sucrose/sugars/assimilates, are <u>pumped/loaded</u> (by companion cells);	
		reference to pumping H ⁺ ;	
		reference to co-transport/AW e.g. H ⁺ carry sucrose with them;	
		mitochondria provide, ATP for active transport; 2 m	ax
		[Total 1	[0]