The circulatory system Mark Scheme 1

Level	International A Level
Subject	Biology
Exam Board	CIE
Topic	Transport in mammals
Sub Topic	The circulatory system
Booklet	Theory
Paper Type	Mark Scheme 1

| Time Allowed : | 63 minutes |
| :--- | :--- | :--- |
| Score $:$ | $/ 52$ |
| Percentage : | $/ 100$ |

Grade Boundaries:

A^{*}	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

1 (a A right ventricle;
Ar. ventricle $\quad R R V$
B vena cava; A vena cavae
I superior/upper/inferior/lower/posterior
R if other terms used
C atrioventricular node ; A AVN
D coronary arteries; $\quad \begin{aligned} & \text { A coronary artery } \\ & \text { I coronary vessels }\end{aligned}$
E bicuspid/left atrioventricular/mitral (valve);

2 (a same, water potential/ Ψ (inside + outside)/no water potential gradient;
A same solute potential I osmotic potential
(so) no, net/overall, movement of water (molecules) ;
A osmosis does not occur
[2]
(b) for two marks match correct plasma component and, mechanism/membrane component if no mechanism given
$\left.\begin{array}{|l|l|l|}\hline \text { plasma component ; } & \text { mechanism ; } & \text { membrane component ; } \\ \hline \begin{array}{l}\text { oxygen } \\ \text { carbon dioxide } \\ \text { steroids/steroid } \\ \text { hormones }\end{array} & \begin{array}{l}\text { (passive) diffusion } \\ \text { A movement from high } \\ \text { to low concentration }\end{array} & \begin{array}{l}\text { (phospho)lipid bilayer/ } \\ \text { hydrophobic core (of } \\ \text { membrane) }\end{array} \\ \hline \begin{array}{l}\text { glucose } \\ \text { amino acid(s) } \\ \text { named amino acid } \\ \text { mineral/ inorganic, ions } \\ \text { named ion e.g. } \\ \text { sodium ions } / \mathrm{Na}^{+}, \\ \text {magnesium ions } / \mathrm{Mg}^{2+} \\ \text { chloride ions } / \mathrm{C} \tau, \\ \text { hydrogen ions } \\ \text { hydrogen carbonate } \\ \text { ions } / \mathrm{HCO}\end{array} & \begin{array}{l}\text { A active transport } \\ \text { A cotransport }\end{array} & \begin{array}{l}\text { facilitated } \\ \text { diffusion ; }\end{array} \\ \begin{array}{l}\text { phosphate ions } / \mathrm{HPO}_{4}{ }^{2-} \\ \text { potassium ions }\left(\mathrm{K}^{+}\right)\end{array} & \begin{array}{l}\text { transport(er)/carrier/ } \\ \text { integral/intrinsic/ } \\ \text { transmembrane, protein ; }\end{array} \\ \text { A channel protein for } \\ \text { facilitated diffusion }\end{array}\right\}$

A urea, with any of the three mechanisms and relevant membrane component to match the mechanism stated
(c) (x) 1000 ;; A (x) 947 / 947.4 or 1053/1052.6
if units given = one mark only
if incorrect allow one mark for correct length measured $9 / 9.5 / 10 \mathrm{~mm}$ and knowledge of formula is correct (magnification = image length/actual length - this can also be seen by workings e.g. $9.5 \mathrm{~mm} \div 9.5 \mu \mathrm{~m}$) but incorrect conversion factor used for final calculation
(d) feature $=$ one mark, with appropriate explanation $=$ one mark

F red blood cells/haemoglobin, close to body cells ;
F (capillary) endothelium/capillary wall, one cell thick/ thin ; A epithelium
E short distance/AW (for oxygen to move to cells) ;
F ref. to, diameter/size, red blood cell and capillary (lumen) similar ;
E slows down flow (to allow sufficient oxygen to move out)/short distance (for oxygen to move to cells) ;
(e) no/fewer, gaps/fenestrations/pores, in endothelium/capillary wall; A spaces
ref. tight junctions between (endothelial) cells; A epithelial cells
idea that cells wrap round/fewer cells make up capillary wall, so reduces
(endothelial) cell-cell contact ;
idea of layer around capillary/basement membrane, impermeable ;
(a (i) A bp for blood pressure throughout
1 bp decreases with distance (from, heart/LV) ; A named vessels to indicate distance
2 difference between minimum and maximum bp decreases (with distance) ;
3 maximum and minimum bp are the same, at the capilaries/after arterioles;
4 (BP) reaches zero kPa , at large veins/vena cava(e) ; A after small veins
A no blood pressure
5 steepest decrease in bp between aterioles and capillaries ;
6 correct data quotes ;
e.g. mp 1 from 16 kPa to 0 kPa for maximum bp
mp 1 from $10.6-10.8 \mathrm{kPa}$ to 0 kPa for minimum bp
$\mathrm{mp} 211.6 / 11.8 \mathrm{kPa}$, in aorta/nearest to left ventricle and 0 kPa at capillaries
mp 3 (same bp of) 5 kPa
(ii) (presence of) valves; \mathbf{R} bicuspid/tricuspid, valves to stop backflow/allows one-way flow/flow only towards heart ;
(b) hydrolysis ; A breaking bond using water
(of/breaking of) peptide bond ;
between Phe and His/Phe-His bond ;
removal of, two amino acids/His and Leu/dipeptide ;
(c) 1 (ACE) inhibitor/drug, has similar shape as, substrate/polypeptide;

2 complementary (shape) to active site (shape) ;
3 binds to/fits into/enters, active site (of ACE enzyme) ;
A forms enzyme-substrate complex
4 substrate cannot, enter/bind;
A competes with substrate for active site
A no/few/prevents formation of, ES complexes
5 reduces rate of, reaction/formation of angiotensin/product formation;
(a accept Hb for haemoglobin throughout
low(er), partial pressure/AW, of oxygen/ O_{2};
high(er), partial pressure/AW, of, carbon dioxide/ CO_{2};
formation of carbaminohaemoglobin ;
carbonic acid disocciation to form, hydrogen ions $/ \mathrm{H}^{+}$(and hydrogen carbonate ions) ;
formation of haemoglobinic acid/binding (of Hb) with, hydrogen ions $/ \mathrm{H}^{+}$, causes release of oxygen ; allow HHb
ref. to Hb affinity for oxygen ; e.g.
Hb has higher affinity for, hydrogen ions/ H^{+}, than oxygen ;
reduces/lowers, affinity of Hb for oxygen
Bohr effect ;
AVP ; e.g. ref. to allosteric effects
(b) lower, partial pressure/AW, of oxygen (at high altitudes) or less oxygen in inhaled air/AW ;
(so) percentage saturation of haemoglobin is lower ;
A haemoglobin is less saturated
A fewer molecules of/less, oxygen combine with haemoglobin
more haemoglobin needed (so more red blood cells) ;
A (more red blood cells) so more haemoglobin/more oxyhaemoglobin can be formed
idea of compensation ; e.g. (to transport) same amount of oxygen to, cells/tissues ;
ref. to (increased) secretion of, erythropoietin/EPO ;
(c) (i) making a (complementary) copy of, DNA; A a gene ref. information/AW, for production of a polypeptide ;
one (DNA) strand acts as a template ; AW
production of (pre) mRNA ;
detail of process; e.g. assembly of nucleotides
RNA polymerase
(ii) nucleotide/base, sequence of, DNA/gene, changed/AW ;

A new allele (formed)
ref. to altered mRNA/AW ;
this may be in context of a named type of mutation consequence on tRNA
tRNA/anticodon, with different amino acid (to ribosome) ;
A tRNA with different anticodon
change in amino acid(s)/different amino acid sequence/change in primary structure ;
affects, secondary structure/tertiary structure / 3D shape/function, of protein ;
ref. to one type of mutation;
e.g. base substitution means
deletion/insertion, leads to frameshift ref. to premature stop codon
(iii) may prevent breaking of hydrogen bonds between, base pairs/bases/nucleotides, (and access of RNA polymerase) ;
attachment of, RNA polymerase (to DNA) ;
progress/functioning, of RNA polymerase (along gene) ;
synthesis/elongation of (pre) mRNA ;
AVP ; e.g. interfere with action of helicase
[Total: 14]
(b) phagocyte / macrophage;

A neutrophil / polymorphonuclear leucocyte R PMN
\mathbf{R} leucocyte / white blood cell unqualified
\mathbf{R} any incorrect qualification
(c) B-lymphocyte / (effector) B (cell) / plasma (cell); R lymphocyte alone \mathbf{R} effector cell unqualified
(d) goblet (cell) ;
(e) cartilage; ignore plates / rings
(a capillary;
plus one of
ref. to size relative to size of red blood cell (in lumen); A small diameter / narrow lumen if capillary correctly identified
(wall is) one cell thick ; A ref. to, only one layer / only endothelium / thin endothelium
(b) (i) red blood cell / erythrocyte; A red blood corpuscle
(ii) water; A plasma
(iii) nucleolus; A nucleus
(c) if working shown, award one mark only if measurement is incorrect $7(\mu \mathrm{~m})$;;
one mark if correct working is shown but answer not to whole number or incorrect conversion used
$39 \mathrm{~mm} / 6000 \mathrm{~A} \pm 1 \mathrm{~mm}$ in measurement

