Inheritance

Question Paper 8

Level	IGCSE
Subject	Biology
Exam Board	CIE
Topic	Inheritance
Paper Type	(Extended) Theory Paper
Booklet	Question Paper 8

Time Allowed: 69 minutes

Score: /57

Percentage: /100

A healthy kidney controls the excretion of urea and other waste products of metabolism from the blood.

After kidney failure there are two possible treatments: dialysis or a kidney transplant.

Fig. 4.1 shows how blood and dialysis fluid move through a dialysis machine.

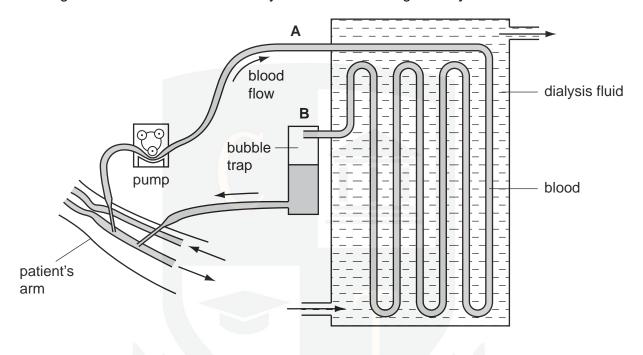


Fig. 4.1

(a)	Describe the from A to B .	changes that	occur to the	e blood as	it flows t	hrough the	dialysis	machine
	CH.	E MI	<u> </u>	<u>X</u>	NL		<u> </u>	
		— T						
								[2

(b)	Discuss the advantages of kidney transplants compared with dialysis.
	[3]

(c) Two brothers have to make a difficult decision.

One brother, with blood group AB, has kidney failure and is on dialysis.

The healthy brother has agreed to donate one of his kidneys to his brother. He has to have a blood test.

Their father has blood group A and their mother has blood group B.

The brothers have a sister who has blood group O.

(i) Explain how this girl has blood group O when her parents have different blood groups. You **must** use the space below for a genetic diagram to help your answer.

Use the symbols ${\bf I}^{\bf A}$, ${\bf I}^{\bf B}$ and ${\bf I}^{\bf O}$ to represent the alleles involved in the inheritance of blood groups.

parental	phenotypes	blood	group A	×	blood	group B	
parental	genotypes			×			
gametes	5			+			
girl's gei	notype						
girl's ph	enotype						
							•••••
							•••••
							•••••
	CIFLE	IVIII DII	ΚY			丛	[4]
(ii)	The healthy same blood o	brother can only d group.	lonate the k	idney to I	nis brother if	they both have	
	What is the p	robability that the	healthy bro	ther also	has blood gr	oup AB?	
							[1]

[Total: 10]

Fig. 1.1 shows a vertical section through a flower of soybean, *Glycine max*, following self-pollination. Fig. 1.2 shows part of the section at a higher magnification.

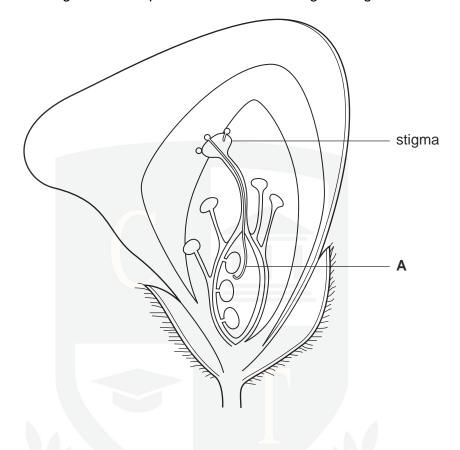


Fig. 1.1

Fig. 1.2

(a) Name the parts labelled **A** to **C** shown in Figs. 1.1 and 1.2.

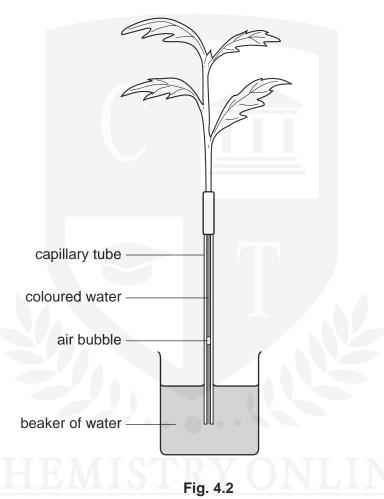
Α	
В	
С	[3]

(ii)	Describe what happens to the structures shown in Figs. 1.1 and 1.2 to bring about fertilisation. You may refer to the structures labelled A to C by their letters if you wish.
	[3]
	[0]
(iii)	Explain the advantages and disadvantages of self-pollination for flowering plants, such as soybean.
	advantages
	disadvantages
Soy	bean is a dicotyledonous plant.
(i)	Name the genus to which the soybean belongs.
(')	Name the genus to which the soybean belongs.
	[1]
(ii)	State two features which are only found in dicotyledonous plants.
	1.
	2. [2]
	[Total: 13]

(b)

3 Fig. 4.1 is a photograph of a root of radish covered in many root hairs.

Fig. 4.1


(a)	Using the term <i>water potential</i> , explain how water is absorbed into root hairs from the soil.
	CHEMICTONANTINE

A potometer is a piece of apparatus that is used to measure water uptake by plants.

Most of the water taken up by plants replaces water lost in transpiration.

A student used a potometer to investigate the effect of wind speed on the rate of water uptake by a leafy shoot. As the shoot absorbs water the air bubble moves upwards.

The student's apparatus is shown in Fig. 4.2.

The student used a fan with five different settings and measured the wind speed. The results are shown in Table 4.1.

Table 4.1

wind speed / metres per second	distance travelled by the air bubble / mm	time / minutes	rate of water uptake / mm per minute
0	4	10	0.4
2	12	5	2.4
4	20	5	4.0
6	35	5	7.0
8	40	2	

(b)	Calculate the rate of water	uptake at the	highest wind	speed and	write your	answer i	in
	the table.						

[1]

[2]

(0)	use figures from Table 4.1 to support your answer.	
		[2]
(d)	State two environmental factors, other than wind speed , that the student should keep constant during the investigation.	
	1	

2.

(e)	Some of the water absorbed by the plants is not lost in transpiration.	
	State two other ways in which water is used.	
	1	
	2	[2]
(f)	Water moves through the xylem to the tops of very tall trees, such as giant redwoods North America. The movement of water in the xylem is caused by transpiration.	of
	Explain how transpiration is responsible for the movement of water in the xylem.	
		[4]
(g)	Plants that live in hot, dry environments show adaptations for survival.	
	State three structural adaptations of these plants.	
	1.	
	2.	
	3. —— TIIITION ——	[3]

[Total: 17]

		Table 5.1		
	definitions			
	the outward appearance of	an organism		
	a length of DNA that codes	for a protein		
	having one set of chromoso	mes		
	type of nuclear division which daughter nuclei that are gen			
	For each of the definitions, s box provided.	elect an appropriate teri	m from the list and	d write it
	chromosome	genotype		mitosis
	chromosome diploid	genotype haploid		mitosis mutation
				mutation
	diploid	haploid	р	mutation
(b)	diploid dominant	haploid heterozygous homozygous	p	mutation henotype ecessive
(b)	diploid dominant gene A couple who have blood gro	haploid heterozygous homozygous ups A and B have four c	p r hildren. Each child	mutation henotype ecessive has a dif
(b)	diploid dominant gene A couple who have blood groblood group. Use the space below to draw	haploid heterozygous homozygous ups A and B have four c	p r hildren. Each child	mutation henotype ecessive has a dif
(b)	diploid dominant gene A couple who have blood groblood group. Use the space below to draw	haploid heterozygous homozygous ups A and B have four c	p r hildren. Each child	mutation henotype ecessive has a dif
(b)	diploid dominant gene A couple who have blood groblood group. Use the space below to draw symbols, I ^A , I ^B and I ^o , for the	haploid heterozygous homozygous ups A and B have four c	p r hildren. Each child now how this is po	mutation henotype ecessive has a dif

children's blood groups

.....

[4]

(c)	Explain what is meant by <i>codominance</i> . You may refer to the genetic diagram in (b) to help you with your answer.
	ro
	[3]
d)	Insulin produced by genetically engineered bacteria first became available in 1982. Before 1982, insulin had been prepared from dead animal tissues.
	Explain the advantages of using insulin produced by genetically engineered bacteria rather than insulin from dead animal tissues.
	[3

(e) Fig. 5.1 shows some of the steps involved in the genetic engineering of bacteria.

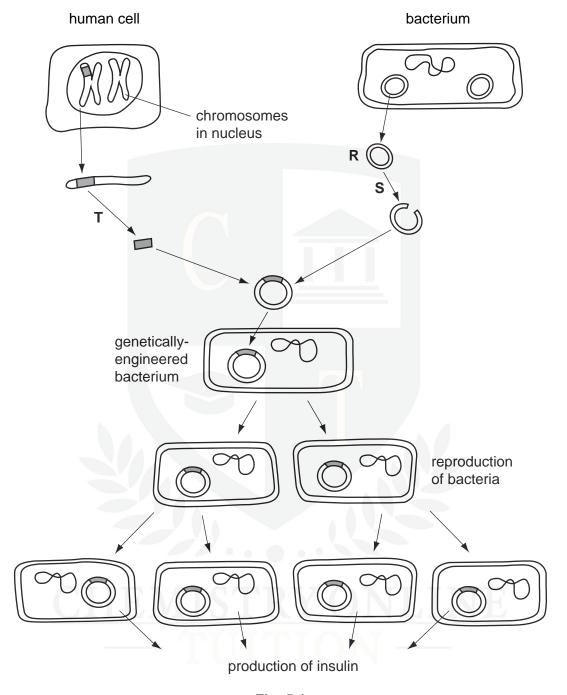


Fig. 5.1

(i) Name structure **R** and state what it is made from.

[2]

(ii) State what is added at stages **S** and **T**.

[1]

[Total: 17]