

Phone: +442081445350

www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

CHEMISTRY ORGANIC CHEMISTRY

Level & Board	CIE (A-LEVEL)
TOPIC:	Halogen Derivatives
PAPER TYPE:	SOLUTION - 1
TOTAL QUESTIONS	11
TOTAL MARKS	105

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

Halogen Derivatives - 1

- (a) (i) AlCl₃ + heat
 - (ii) u.v light.
- (b) PCI₅ or SOCI₂.
- (c) (i)

	Place one tick only
	in this column
A > B > C	
A > C > B	
B > A > C	
Drarc	
B>C>A	
BPCPA	
С > В > А	
C > A > B	

(ii) Acyl chloride is most reactive because $R - C_{i}^{I_{\delta+}} - C_{i}^{\delta}$ carbonyl carbon atom is

very electropositive and easily attacked by nucleophile.

CH, Is least reactive because the benzene ring electrons are delocalised

Over the ring causing the C - Cl bond to become stronger.

2)

(a) (i) stage I	reagent(s):	Cl_2 gas
	conditions(s):	U.V. light
stage II	reagent(s):	KCN

www.chemistryonlinetuition.com conditions(s): heat in ethanol.

(ii) Reagent(s): Br₂

3)

(b) Nucleophilic substitution

. CN- acts as a nucleophile and attacks the electron deficient carbon atom C.

C - CN bond is formed, while C - Br bond cleaves heterolytically.

(c) (i)
$$J = (CH_3)_2C = CH_2$$

(ii) $K = (CH_3)_2 CHCN$

 $L = (CH_3)_2 CHCO_2 CH_2 CH_3$

(iii)
$$CH_3CH_2 - N - CH_2CH_2 - N - CH_2$$

| | |
H H H

4)

(a)

The C – Br bond is polar due to the electronegative Br. The negatively charged nucleophile, OH^- , attacks the electron deficient C to C – Br. The C – O bond is formed while the C – Br bond is cleaved at the same time, going through a

pentavalent transition state which is unstable and breaks to form the products.

(b) (i) order with respect to $CH_2 = CHCH_2Br 1$

order with respect to NaOH 0

- (ii) $CH_2 = CHCH_2Br + NaOH \rightarrow CH_2 = CHCH_2 + NaBr$
- (c) (i) NO. This reaction has a first order kinetics. In 3(a), the reaction has a second order kinetics.

(ii)

(b) The p-orbital of Br can interact with the π -orbital in the C = C bond. This strengths. The C – Br where it has partial double bond character.

5)

- (a) (i) U.V light.
 - (ii) Alcohlic KOH and heat.
 - (iii)

$$= CH - CH_2 =$$

am Sorry !!!!!

(iv)

6)

(a) stage I: NaBr + $H_2SO_4 \rightarrow NaHSO_4 + HBr$ Stage II: C₄H₉OH + HBr \rightarrow C₄H₉Br + H₂O

С

- (b) Moles of NaBr = $\frac{35}{103} = 0.34$
 - \Rightarrow moles of HBr = 0.34

moles of C₄H₉OH = $\frac{20}{74}$ = 0.27

0.27 moles of C4H9OH will react with 0.27 moles of NaBr,

- ∴ NaBr is in excess
- (c) moles of C4H9OH = $\frac{15.4}{74}$ = 0.208

Moles of C_4H_9Br expected = 0.208

Actual yield of C4H9Br = $\frac{22.5}{137}$ = 0.164 moles

percentage yield = $\frac{0.164}{0.208}$ = 78.8%

(d) inorganic by-product : Bromine.

Role of conc. H₂SO₄: Acts as an oxidizing agent.

Organic by-product : but-1-ene.

Role of conc. H_2SO_4 : Acts as a dehydrating agent.

I am Sorry !!!!!

8)

(a)	reaction 1	reagent:	NaOH or KOH
		Solvent:	H ₂ O
	Reaction 2	reagent:	NH₃/ammonia
		Solvent:	Alcohol or ethanol
	Reaction 3	reagent:	NaOH or KOH
		Solvent:	Ethanol

(b) The rate of reaction with iodobutane will be faster than with bromobutane

because C – I bond is weaker than C – Br bond.

B.E for C- Br bond is 280 KJ/mol

Hence C – I bond is easier to break. CH₃CH₂CH₂CH₂I reacts faster than

 $CH_3CH_2CH_2CH_2Br$.

- (c) 1. Nontoxic or iertness.
 - 2. Easy to vaporise or volatile compound.
- (d) (i) It is a type of bond breaking in which each atom takes its electron and forms free radical in the presence of u.v. light.
 - (ii) $CCI_2F_2 \rightarrow CCIF_2 + CI$
- (e) These compounds are highly flammable and can easily catch fire.
- 9)
- (e) (i) Ketone, Alcohol, Alkene
 - (ii) Add 2,4-Dinitrophenylhydrazine (DNPH) to both compound A and lawsone and heat. Lawsone will give an orange/red precipitate whereas no reaction will be observed with compound A.
 - (iii) NaBH₄
 - (iv)

- (b) (i) $E_{cell} = 1.33 0.36 = (+) 97 V$
 - (ii) $Cr_2O_7^{2-} + 8H^- + 3C_{10}H_8O_3 \rightarrow 2Cr^{3+} + 7H_2O + 3C_{10}H_6O_3$

(iii) Moles of
$$K_2Cl_2O_7 = \frac{7.50}{1000} \times 0.05 = 3.75 \times 10^{-4}$$
 mol

$$K_2Cr_2O_7: A:: 1:3$$

 \therefore moles of A = 3.75 \times 10⁻⁴ \times 3 = 1.125 \times 10⁻³mol

Concentration of A = [A]

$$=\frac{1.125\times10^{-3}}{20}\times1000$$

am Sorry !!!!!

www.chemistryonlinetuition.com

10)

- (a) Acidities: $CHCl_2CO_2H > CH_2ClCO_2H > CH_3CO_2H$.
 - CHCl₂CO₂H and CH₂ClCO₂H have chlorine atoms which are more electron withdrawing than H. The anions formed by CHCl₂CO₂H and CH₂ClCO₂H are more stabilized than that formed from CH₃CO₂H, since the negative charge of the anions of CHCl₂CO₂H and CH₂ClCO₂H is more greatly dispersed by the electron

www.chemistryonlinetuition.com

withdrawing chlorine atoms. Since $CHCl_2CO_2H$ has two chlorine atoms as compared to CH_2ClCO_2H , the charge on $CHCl_2CO_2^-$ is more greatly dispersed than on CH_2ClCOO^- . Hence, $CHCl_2CO_2H$ dissociates to a greater extent than CH_2ClCO_2H which in turn dissociates more than CH_3CO_2H .

(b)

First	Second	Test	Observation	Observation
compound	compound	(reagents and	with first	with second
		conditions)	compound	compound
\frown		Br ₂ (aa)	None	While ppt
$\langle \rangle - NH_2$	\square NH ₂			formed
CH ₃ CH ₂ COCI	CH ₃ COCH ₂ Cl	2, 4-DNPH	None	Orange ppt
				formed
CH ₃ CH ₂ CHO	CH ₃ COCH ₃	Tollen's	Silver/Black	none
		Reagent +	ppt	
		warm		

(c) (i) Condensation

(ii)

I am Sorry !!!!

(iii) Convert P into a diacyl chloride and add it to a solution of aqueous sodium hydroxide and E.

- www.chemistryonlinetuition.com
- (iv) Monomer to be changed: F

11)

- (a) The enthalpy change when 1 mole of bonds is broken in a molecule with the reactants and products in the gas phase under standard conditions of 298K and 1 atm.
- (b) (i) The bond energy decreases from F to I. This is because the C X bond becomes longer, and hence weaker, from F to I.
 - (ii) From F to I, as the bond energy of C X decreases, the reactivity of the halogenoalkanes increases.
- (c) The C Cl bond, with bond energy 340KJ/mol, is weaker than the C H bond, with bond energy 410 KJ/mol, and the C – F bond. Hence it is easily broken down into chlorine radicals, that causes the breakdown of O₃ in the ozone to produce O₂.

I am Sorry !!!!!

(e) (i) Ultraviolet light.

- (ii) Free radical substitution.
- (iii) Bond energy of C H bond = 410 KJ mol^{-1}

Bond energy of H – Cl bond = 431 KJ mol⁻¹

:
$$\Delta H = (410 \times 6) - (410 \times 5 + 431)$$

= 2460 – 2481 = - 21 KJ mol⁻¹

- (iv) Bond energy of C H = 410 KJ mol⁻¹ Bond energy of C – I = 299 KJ mol⁻¹
 - :. $\Delta H = (410 \times 6) (410 \times 5 + 299)$

(v) The reaction of iodine and ethane is endothermic and requires energy.

(vi) $Cl_2 \rightarrow 2Cl^{\bullet}$

 CH_3CH_2 + $CI_2 \rightarrow CH_3CH_2CI + CI$

 $CH_3CH_2^{\bullet} + CI^{\bullet} \rightarrow CH_3CH_2CI$

- Founder & CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- · UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- · Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK