

Phone: +442081445350

www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

CHEMISTRY ORGANIC CHEMISTRY

Level & Board	CIE (A-LEVEL)
TOPIC:	INTRODUCTORY TOPICS
PAPER TYPE:	SOLUTION - 1
TOTAL QUESTIONS	04
TOTAL MARKS	29

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

- (a) (i) Molecular formula: $C_{10}H_{20}O$
 - (ii) M_r = (12×10) + (1×20) + 16 = 156
- (b) (i) Primary alcohol.

(ii) Alkene.

(c) Carbon atom number 6 circled.

citronellol

(d) (i)

(ii) Geraniol does not have any chiral carbon atom.

(e) Aqueous bromine is decolorized.

(a) A catalyst provides an alternative pathway with a lower activation energy for a

reaction to take place. With a lower E_a , there will be more particles with energy

greater than this new but lower Ea. Hence, there will be more effective collision

between particles and the reaction rate increases.

- (b) (I) Involves breaking of C H bond Δ H = BE = 410KJ mol⁻¹
 - (II) Involves forming a C Cl bond $\Delta H = -BE 340$ KJ mol⁻¹
 - (III) Involves forming a Cl Cl bond $\Delta H = -BE = -244$ KJ mol⁻¹

Hence, (II) is the most feasible and it has the lowest activation energy. (I)has the highest activation energy since this step is endothermic.

(c) $2Fe^{2+} + H_2O_2 + 2H^+ \rightarrow 2Fe^{3+} + 2H_2O$ $E_{cell}^{\ominus} = 1.77 - 0.77 = 1.00V > 0$ $2Fe^{3+} + H_2O_2 \rightarrow 2Fe^{2+} + O_2 + 2H^+$ $E_{cell}^{\ominus} = 0.77 = 0.68 = +0.09V > 0$ The 2 steps in the pathway have positive E_{cell}^{\ominus} and hence are energetically

The 2 steps in the pathway have positive E_{cell}^{\ominus} and hence are energetically feasible.

(a) (i)

- (ii) C₁₃H₁₈O₂
- (iii) M_r value of ibuprofen = $(12 \times 13) + (1 \times 18) + (16 \times 2) = 206$

No. of moles = conc. \times vol

$$= 0.15 \times \frac{100}{1000} = 0.015$$

 $= 1.5 \times 10^{-2}$ moles

Mass of Ibuprofen = no. of moles \times M_r

= 1.5 × 10-2 × 206

 $= 3.09 \approx 3.1g3$)

4)

(a) $C_4H_8O_2$

(b)

	HCO2CH(CH3)2	HCO ₂ CH ₂ CH ₂ CH ₃
	W	х
	CH ₃ CO ₂ CH ₂ CH ₃ Y	CH ₃ CH ₂ CO ₂ CH ₃
(c) (i) Presence of Carbonyl group $C = O$		

- (ii) CHO group (Aldehyde) is absent OR ketone is present.
- (iii) Alcohol C is (CH₃)₂CHOH
- (iv) W
- (d) None. No chiral centres are present in any of the four esters.

I am Sorry !!!!!

- Founder & CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- · UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK