Atomic Structure

Mark Scheme 1

Level International A Level

Subject Chemistry

Exam Board CIE

Topic Atomic Structure

Sub-Topic

Paper Type Theory

Booklet Mark Scheme 1

Time Allowed: 68 minutes

Score: /56

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

Question		Mark Scheme				Total
1	(a)	sub-atomic particle	relative mass	relative charge		
		neutron		0	[1]	
		electron	1/1836	-	[1]	
		proton		+	[1]	[3]
	(b) (i)	RAM = mean/average mass of the isotopes/an atom(s) relative to 1/12 the mass of an atom of ¹² C/on a scale where an atom of ¹² C is (exactly) 12 (units)				
		number wit	e = atoms with the same number of protons/atomic number/proton number with different mass numbers/numbers of neutrons/nucleon number			
	(ii)	$\frac{\left(0.89 \times 74\right) + \left(9.37 \times 76\right) + \left(7.63 \times 77\right) + \left(23.77 \times 78\right) + \left(49.61 \times 80\right) + \left(8.73 \times 82\right)}{100}$				
		= 79.04 (2 d.p.) AND S	Se		[1]	[2]
	(c) (i)	TeC1 $\frac{47.4}{128}$ $\frac{52.6}{35.5}$ $\frac{0.370}{0.370}$ $\frac{1.48}{0.370}$			[1]	
		1 4 so	EF = TeCl ₄		[1]	
Empirical Formula Mass = 270 so MF =			= 270 so MF = TeC <i>l</i> ₄	[1]	[3]	
	(c) (ii)	Covalent AND simple/	molecular	JNLINE	[1]	
		low melting point/reaction with water				[2]
	(iii)	$TeCl_4 + 3H_2O \rightarrow H_2TeO_3 + 4HCl$ OR $TeCl_4 + 2H_2O \rightarrow TeO_2 + 4HCl$				[1]
	(d) (i)	Yellow/orange flame White fumes/solid Yellow/green gas disappears			[1] [1] [1]	[max 2]

Question	Mark Scheme	Mark	Total
(ii)	NaCl giant/lattice AND ionic SiCl ₄ simple/molecular AND covalent	[1] [1]	
	For NaC l large difference in electronegativity (of sodium/Na and chlorine/ Cl/Cl_2) (indicates electron transfer/ions)	[1]	
	For SiC <i>I</i> ₄ smaller difference (indicates sharing/covalency) with (weak) van der Waals'/IM forces (between molecules) ora		
		[1]	[4]
			[20]

Question	Scheme				Total
2 (a)	name of particle	relative mass	relative charge		
	proton		+	[1]	
	electron	1/1836	_	[1]	
	neutron		0	[1]	[3]
(b) (i)	Mass of an atom(s)			[1]	
	relative to 1/12 th (the ma OR relative to carbon-12 which		on-12	[1]	[2]
(ii)	% of third isotope = 10	,		[1]	
	(24×79)+(26×11.0)+10 100	$\frac{x}{}$ = 24.3		[1]	
	10x = 248				
	x = 24.8 (3s.f.)			[1]	[3]
(c) (i)	anode $l^- \rightarrow C l_2 + 2 cathode$ $l^+ + 2e^- \rightarrow c$			[1] [1]	[2]
(ii)	Mg O H 31.65 20.84 1.31 1	C1 46.2 35.5		[1]	
	1.30 1.30				
	MgOHC1	ompar o		[1]	[2]
(d) (i)	Na ₂ O basic/alkaline; A <i>l</i> ₂ O Na ₂ O (giant) ionic AND S			[1] [1]	[2]
(ii)	$Na_2O + 2HCl \rightarrow 2NaCl +$	H ₂ O		[1]	
	$A l_2 O_3 + 6HC l \rightarrow 2A l C l_3 +$	3H₂O		[1]	
	$Al_2O_3 + 2NaOH + 7H_2O$ $Al_2O_3 + 2NaOH + 3H_2O$ $Al_2O_3 + 2NaOH \rightarrow 2Na$ $Al_2O_3 + 2OH + 7H_2O$ $Al_2O_3 + 2OH + 3H_2O$ $Al_2O_3 + 2OH \rightarrow 2AlO_2$	$\begin{array}{l} O \rightarrow 2 \text{NaA} l(OH)_4 \text{OR} \\ A lO_2 + H_2 O \text{OR} \\ \rightarrow 2 [A l(OH)_4 (H_2 O)_2]^{-1} \\ \rightarrow 2 [A l(OH)_4]^{-1} \text{OR} \end{array}$		[1]	
	$SO_3 + NaOH \rightarrow NaHSO_4$ $SO_3 + 2NaOH \rightarrow Na_2SO_4$			[1]	[4]

Question	Scheme		Total
3 (a)	(1s ²)2s ² 2p ⁶		[1]
(b) (i)	The amount of energy required/energy change when one electron is removed	[1]	
	from each atom in one mol of gaseous atoms	[1] [1]	[3]
(ii)	Greater nuclear charge/number of protons Same shielding/number of shells/energy level	[1] [1]	[2]
(c) (i)	mean/average mass of the isotopes/an atom(s) relative to 1/12 of the mass of an atom of ¹² C/on a scale where an atom of ¹² C is (exactly) 12	[1] [1]	[2]
(ii)	20.2 = 100	[1]	
	$\frac{2020 - 1815.27}{9.25} = 22.133$ $y = 22$	[1]	[2]
(d) (i)	$pV = \frac{mRT}{M_r}$		
	$M_r = \frac{mRT}{pV} = \frac{0.275 \times 8.31 \times 298}{100 \times 10^3 \times 200 \times 10^{-6}}$	[1]	
	$M_r = 34.05/34.1$	[1]	[2]
(ii)	(Let % Ne = x so % Ar = 100-x) $\frac{20.2x + 39.9(100 - x)}{100} = 34.05$		
	% Ne = 29.7	[1]	[1]
1 (e (i)	Van der Waal's/London/dispersion Uneven electron distribution/temporary dipole Induced dipole-dipole attraction	[1] [1] [1]	[3]
(ii)	more electrons more polarisable/greater attraction/stronger IMFs	[1] [1]	[2]
			[18]