Atomic Structure

Mark Scheme 4

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Atomic Structure
Sub-Topic	
Paper Type	Theory
Booklet	Mark Scheme 4

Time Allowed:	83 minutes
Score:	$/ 69$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	777.5%	70%	62.5%	57.5%	45%	$<45 \%$

(i)	162	$\left({ }^{81} \mathrm{Br}^{-81} \mathrm{Br}^{+}\right)$	
	160	$\left({ }^{81} \mathrm{Br}^{-79} \mathrm{Br}^{+}\right)$	
	158	$\left({ }^{79} \mathrm{Br}^{-79} \mathrm{Br}^{+}\right)$	ignore missing charges
	81	$\left({ }^{81} \mathrm{Br}^{+}\right)$	
	79	$\left({ }^{79} \mathrm{Br}^{+}\right)$	
(ii)	158:	:162 =1:2:1	
	$79: 81=1: 1$		

for molecular species
for atomic species for 5 masses [1]
$81 \quad\left({ }^{81} \mathrm{Br}^{+}\right)$
$79 \quad\left({ }^{79} \mathrm{Br}^{+}\right)$
(ii) $158: 160: 162=1: 2: 1$
$79: 81=1: 1$
(b) either $\mathrm{BrCH}_{2} \mathrm{CHBr}-\mathrm{CHO}$ or $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}$ (double bond needed)
(ii) reaction I: $\quad \mathrm{Br}_{2}$ (aq or in CCl_{4} etc.), light negates - solvent not needed
reaction II: $\quad \mathrm{NaBH}_{4}$ or $\mathrm{H}_{2} / \mathrm{Ni}$ etc. (but not if \mathbf{A} is $\mathrm{CH}_{2}=\mathrm{CH}_{-}-\mathrm{CH}_{2} \mathrm{OH}$)
allow LiAlH_{4} or Na /ethanol
(reactions can be reversed)
(c) $\quad \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{OBr}_{2}=216,218$ and 220
(any one)
(ii) 31 is $\mathrm{CH}_{2} \mathrm{OH}^{+} / \mathrm{CH}_{3} \mathrm{O}^{+}$

106 is $\mathrm{C}_{2} \mathrm{H}_{3}{ }^{79} \mathrm{Br}^{+}$
108 is $\mathrm{C}_{2} \mathrm{H}_{3}{ }^{81} \mathrm{Br}^{+}$
185 is $\mathrm{C}_{2} \mathrm{H}_{3}{ }^{79} \mathrm{Br}_{2}{ }^{+} \quad$ ignore missing charges
187 is $\mathrm{C}_{2} \mathrm{H}_{3}{ }^{79} \mathrm{Br}^{81} \mathrm{Br}^{+} \quad 6$ correct [4]
189 is $\mathrm{C}_{2} \mathrm{H}_{3}{ }^{81} \mathrm{Br}_{2}{ }^{+} \quad 5$ correct [3] etc
if no mass numbers given - [1] only
[Total: 13 max 12]
(a (i) $K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{RCO}_{2}^{-}\right] /\left[\mathrm{RCO}_{2} \mathrm{H}\right]$
(ii) $\mathrm{p} K_{\mathrm{a}}=-\log _{10} K_{\mathrm{a}}$ or $-\log K_{\mathrm{a}}$ or $\log \left[\mathrm{H}^{+}\right]^{2} /\left[\mathrm{RCO}_{2} \mathrm{H}\right]$ NOT ln ;
(b) acid strength increases from no. 1 to no. 3 or down the table or as Cls increase due to the electron-withdrawing effect/electronegativity of chlorine (atoms) stabilising the anion or weakening the O-H bond NOT H^{+}more available
(ii) chlorine atom is further away (from $\mathrm{O}-\mathrm{H}$) in no. 4, so has less influence
(iii) either: $\mathrm{pH}=1 / 2\left(\mathrm{p} K_{\mathrm{a}}-\log _{10}[\right.$ acid $\left.]\right)$ or $K_{\mathrm{a}}=10^{-\mathrm{pKa}}=1.259 \times 10^{-3}$

$$
\begin{array}{ll}
=1 / 2(4.9+2) & {\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(K_{\mathrm{a}} . \mathrm{c}\right)=3.55 \times 10^{-4}} \\
=3.4 \text { (allow } 3.5 \text {) } & \mathrm{pH}=3.4
\end{array}
$$

([1] for correct expression \& values; [1] for correct working)
(c) (i) catalyst
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CH}_{2} \mathrm{CHClCO}_{2} \mathrm{H}+\mathrm{HCl}$
(iii) nucleophilic substitution NOT addition/elimination
(iv) $\mathrm{M}_{\mathrm{r}}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)=74 \quad \mathrm{M}_{\mathrm{r}}\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}_{2} \mathrm{H}\right)=89$
$\therefore 10.0 \mathrm{~g}$ should give $10 \times 89 / 74=12.03 \mathrm{~g}$
\therefore percentage yield $=100 \times 9.5 / 12.03=79 \%$
(d) ${ }^{+} \mathrm{NH}_{3}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CO}_{2}^{-}$
correct atoms [1]
Allow charges on H of $\mathrm{H}_{3} \mathrm{~N}$, and - COO but not -C-O-O
(a same proton no./atomic no./no. of protons
(b)

	number of		
isotope	p	neutrons	electrons
${ }^{56} \mathrm{Fe}$	$\mathbf{2 6}$		
${ }^{59} \mathrm{Co}$	$\mathbf{2 7}$		

(1)
(1)
(1)
give one mark for each correct column allow (1) if no column is correct but one row is correct
(c) weighted mean/average mass
of an atom (not element)
(1)
compared with ${ }^{12} \mathrm{C}$
one atom of ${ }^{12} \mathrm{C}$ has a mass of exactly 12
[relative to $1 / 12{ }^{\text {th }}$ the mass of a ${ }^{12} \mathrm{C}$ atom would get 2]
or
mass of 1 mol of atoms
compared with ${ }^{12} \mathrm{C}$
1 mol of ${ }^{12} \mathrm{C}$ has a mass of 12 g
(ii) $A_{r}=\frac{54 \times 5.84+56 \times 91.68+57 \times 2.17}{100}$

$$
\begin{equation*}
=\underline{5573.13}=55.7 \text { to } 3 \mathrm{sf} \tag{1}
\end{equation*}
$$

$$
100
$$

allow 55.9 if A_{r} is calculated using 99.69 instead of 100

4 (a) Atoms which have the same number of protons (or same element) but different numbers of neutrons (1)
(b) (i) ${ }^{35} \mathrm{Cl}$ (1)
(ii) $\mathrm{H}^{37} \mathrm{Cl}$ (1)
(c) $\quad \mathrm{HCl}$ line at 36 has rel. abundance of 90 38

These show ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{C} l$ in ratio $3: 1$ (1) [or use of 35 and 37]
(d) Mean of the two isotopes $\frac{3 \times 35+1 \times 37}{4}=35.5$ (1)

Question	point	Marks
5 (a)	oxygen: $\left(1 s^{2}\right) 2 s^{2} 2 p^{4}$ fluorine: ($1 s^{2}$) $2 s^{2} 2 p^{5}$	1
(b) (i)	$\mathrm{F}_{2} \mathrm{O} / \mathrm{OF}_{2}$	1
(ii)		1
(iii)	bent or non-linear	1
(c) (i)	E^{\ominus} values: $\mathrm{F}_{2} / \mathrm{F}^{-}=2.87 \mathrm{~V}$ and $\mathrm{Cl}_{2} / \mathrm{Cl}^{-}=1.36 \mathrm{~V}$ fluorine (has the more positive E^{\ominus} so) is more oxidising	1 1
(ii)	redox	1
(iii)	$\mathrm{ClF}+2 \mathrm{KBr} \longrightarrow \mathrm{KCl}+\mathrm{KF}+\mathrm{Br}_{2}$	1
[Total: 8]		

Question	Scheme	Mark	T
6 (a)	The amount of energy required/energy change/enthalpy change when one electron is removed from each atom / (cat)ion in one mol of gaseous atoms / (cat)ions OR energy change when 1 mole of electrons is removed from one mole of gaseous atoms/ions $\mathrm{X}(\mathrm{g}) \rightarrow \mathrm{X}^{+}(\mathrm{g})+\mathrm{e}^{-}$gains 2 marks	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	3
(b) (i)	Group V/5/15 Big difference between fifth and sixth ionisation energies	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
(ii)	$\begin{aligned} & 1 s^{2} 2 s^{2} 2 p^{3} \\ & \text { ecf from (b)(i) if period } 2 \end{aligned}$	1	
(c) (i)	(Weighted) mean/average mass of an atom(s) (of an element) Relative to $1 / 12^{\text {th }}$ of (the mass of an atom of) carbon-12 OR relative to carbon-12 which is (exactly) 12 (units) allow as an expression	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
(ii)	So $\frac{68.87 / 35.5}{31.13 / A_{r}}=2$ $\mathrm{A}_{\mathrm{r}}=\frac{2 \times 31.13 \times 35.5}{68.87}=32.0923=32.1 \text { to } 3 \text { s.f. }$ Allow alternative correct methods	1 1	2

Question	Scheme	Mark	T
(d) (i)	$\begin{array}{ll} \mathrm{NaCl}+\mathrm{aq}) \rightarrow & \mathrm{Na}^{+}+\mathrm{Cl}^{-} \\ \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow & \mathrm{Na}^{+}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \\ & \\ \mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow & \mathrm{SiO}_{2}+4 \mathrm{HCl} \\ \mathrm{SiCl}_{4}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow & {\mathrm{Si}(\mathrm{OH})_{4}+4 \mathrm{HCl}}_{\mathrm{SiCl}_{4}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow}^{\mathrm{SiO}_{2} .2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{HCl}} \end{array}$ Allow correct equation with other molar amounts of water	1	2
(ii)	NaCl is ionic AND giant/lattice NaCl dissolves/does not react SiCl_{4} is covalent AND molecular/simple SiCl_{4} is hydrolysed/reacts	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	4
(e)	$\begin{aligned} & \text { shape of } \mathrm{SF}_{6}=\text { Octahedral } \\ & \text { bond angle }=90^{\circ} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
			18

