Atomic Structure ### Mark Scheme 4 Subject Chemistry **Exam Board** CIE **Topic** Atomic Structure International A Level Sub-Topic Level Theory **Paper Type** **Booklet** Mark Scheme 4 Time Allowed: 83 minutes Score: /69 /100 Percentage: #### **Grade Boundaries:** | A* | Α | В | С | D | E | U | |------|--------|-----|-------|-------|-----|------| | >85% | 777.5% | 70% | 62.5% | 57.5% | 45% | <45% | (⁸¹Br^{- 81}Br⁺) (i) 162 for molecular species [1] ⁸¹Br^{- 79}Br⁺) 160 for atomic species [1] ⁷⁹Br^{- 79}Br⁺) ignore missing charges for 5 masses [1] 158 (⁸¹Br⁺) 81 (⁷⁹Br⁺) 79 158:160:162 =1:2:1 [1] [1] 79:81 =1:1 (b) either BrCH₂CHBr-CHO or CH₂=CH-CH₂OH (double bond needed) [1] (ii) reaction I: Br₂(aq or in CC₁₄ etc.), light negates – solvent not needed [1] reaction II: NaBH₄ or H₂/Ni etc. (but not if **A** is CH₂=CH-CH₂OH) allow LiAIH4 or Na/ethanol [1] (reactions can be reversed) (c) $C_3H_6OBr_2 = 216, 218 \text{ and } 220$ (any one) [1] (ii) 31 is CH₂OH⁺/CH₃O⁺ C₂H₃⁷⁹Br⁺ C₂H₃⁸¹Br⁺ C₂H₃⁷⁹Br₂⁺ C₂H₃⁷⁹Br⁸¹Br⁺ C₂H₃⁸¹Br₂⁺ 106 is 108 is 185 ignore missing charges is 6 correct [4] 187 is 189 is 5 correct [3] etc [4] if no mass numbers given - [1] only [Total: 13 max 12] ## CHEMISTRY ONLINE (a (i) $K_a = [H^+][RCO_2^-]/[RCO_2H]$ [1] 2 (ii) $pK_a = -\log_{10}K_a \text{ or } -\log K_a \text{ or } \log [H^{+}]^2/[RCO_2H] \text{ NOT } ln;$ [2] (b) acid strength increases from no. 1 to no. 3 or down the table or as C1s increase [1] due to the electron-withdrawing effect/electronegativity of chlorine (atoms) [1] stabilising the anion or weakening the O-H bond NOT H⁺ more available [1] (ii) chlorine atom is further away (from O-H) in no. 4, so has less influence [1] either: pH = $\frac{1}{2}$ (p K_a – log₁₀[acid]) or K_a = 10^{-pKa} = 1.259×10^{-3} (iii) $[H^{+}] = \sqrt{(K_a. c)} = 3.55 \times 10^{-4}$ $= \frac{1}{2} (4.9 + 2)$ [1] = 3.4 (allow 3.5)pH = 3.4ecf [1] ([1] for correct expression & values; [1] for correct working) [6] (c) (i) catalyst [1] (ii) $CH_3CH_2CO_2H + Cl_2 \longrightarrow CH_2CHClCO_2H + HCl$ [1] (iii) nucleophilic substitution NOT addition/elimination [1] (iv) $M_r(CH_3CH_2CO_2H) = 74 M_r(CH_2CH(NH_2)CO_2H) = 89$ [1] \therefore 10.0 g should give 10 x 89/74 = 12.03 g ∴ percentage yield = 100 x 9.5/12.03 = **79%** ecf [1] ([2] for correct answer) [5] (d) *NH₃-CH(CH₃)-CO₂correct atoms [1] Allow charges on H of H₃N, and –COO but not –C-O-O correct charges [1] Dr. Asher Rana [2] [Total: 15] 3 (a same proton no./atomic no./no. of protons different mass no./nucleon no./no. of neutrons (1) [2] (b) | | | number of | | |------------------|-----|-----------|-----------| | isotope | р | neutrons | electrons | | ⁵⁶ Fe | 26 | | | | ⁵⁹ Co | 27 | | | | | (1) | (1) | (1) | give one mark for each correct column allow (1) if no column is correct but one row is correct [3] (c) weighted mean/average mass of an <u>atom</u> (not element) (1) compared with ¹²C (1) one atom of ¹²C has a mass of exactly 12 [relative to ¹/₁₂th the mass of a ¹²C atom would get 2] <u>or</u> (ii) $$A_r = \underline{54 \times 5.84 + 56 \times 91.68 + 57 \times 2.17}$$ (1) $$= \underline{5573.13} = 55.7 \text{ to } 3 \text{ sf}$$ $$100$$ (1) allow 55.9 if A_r is calculated using 99.69 instead of 100 [5] [Total: 10] - 4 **(a)** Atoms which have the same number of protons (or same element) but different numbers of neutrons (1) - **(b) (i)** ^{35}Cl (1) - (ii) $H^{37}Cl$ (1) - (c) H C*l* line at 36 has rel. abundance of 90 38 30 - These show ^{35}Cl and ^{37}Cl in ratio 3:1 (1) [or use of 35 and 37] - (d) Mean of the two isotopes $\frac{3 \times 35 + 1 \times 37}{4} = 35.5$ (1) [1] [Total: 6] | Question point | | Marks | |----------------|---|------------| | 5 (a) | oxygen: $(1s^2) 2s^2 2p^4$ fluorine: $(1s^2) 2s^2 2p^5$ | 1 | | (b) (i) | F ₂ O / OF ₂ | 1 | | (ii) | F + O F + F | 1 | | (iii) | bent or non-linear | 1 | | (c) (i) | E° values: $F_2/F^- = 2.87 \text{ V}$ and $Cl_2/Cl^- = 1.36 \text{ V}$ | 1 | | | fluorine (has the more positive E ^e so) is more oxidising | 1 | | (ii) | redox | 1 | | (iii) | $ClF + 2KBr \longrightarrow KCl + KF + Br_2$ | 1 | | | | [Total: 8] | # CHEMISTRY ONLINE — TUITION — | Question | on Scheme | | Т | |--------------|---|-------|---| | 6 (a) | The amount of energy required/energy change/enthalpy change when one electron is removed from each atom/(cat)ion in one mol of gaseous atoms/(cat)ions $ \begin{array}{c} \textbf{OR} \text{ energy change when 1 mole of electrons is removed from one mole of gaseous atoms/ions} \\ \textbf{X}(g) \rightarrow \textbf{X}^+(g) + e^- \text{ gains 2 marks} \\ \end{array} $ | 1 1 1 | 3 | | (b) (i) | Group V/5/15 | 1 | | | | Big difference between fifth and sixth ionisation energies | 1 | 2 | | (ii) | 1s ² 2s ² 2p ³ ecf from (b)(i) if period 2 | 1 | | | (c) (i) | (Weighted) mean/average mass of an atom(s) (of an element) | 1 | | | | Relative to 1/12 th of (the mass of an atom of) carbon-12 OR relative to carbon-12 which is (exactly) 12 (units) allow as an expression | 1 | 2 | | (ii) | $ \frac{\mathbf{Z}}{\frac{31.13}{A_r}} \frac{Cl}{\frac{68.87}{35.5}} = 1:2 $ So $\frac{68.87/35.5}{\frac{31.13}{43.43}} = 2$ | 1 | | | | $A_{r} = \frac{2 \times 31.13 \times 35.5}{68.87} = 32.0923 = 32.1 \text{ to } 3\text{s.f.}$ | 1 | | | | Allow alternative correct methods | | 2 | | Question | Scheme | Mark | Т | |----------|---|------------------|----| | (d) (i) | $NaCl (+ aq) \rightarrow Na^{+} + Cl^{-}$
$NaCl + H_{2}O \rightarrow Na^{+} + Cl^{-} + H_{2}O$ | 1 | | | | $SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCl$
$SiCl_4 + 4H_2O \rightarrow Si(OH)_4 + 4HCl$
$SiCl_4 + 4H_2O \rightarrow SiO_2.2H_2O + 4HCl$ | 1 | | | | Allow correct equation with other molar amounts of water | | 2 | | (ii) | NaC l is ionic AND giant/lattice
NaC l dissolves/does not react
SiC l_4 is <u>covalent</u> AND molecular/simple
SiC l_4 is hydrolysed/reacts | 1
1
1
1 | 4 | | (e) | shape of SF ₆ = Octahedral bond angle = 90° | 1 1 | 2 | | | | | 18 | # CHEMISTRY ONLINE — TUITION —