## Atomic Structure

## Mark Scheme 5

| Level | International A Level |
| :--- | :--- |
| Subject | Chemistry |
| Exam Board | CIE |
| Topic | Atomic Structure |
| Sub-Topic |  |
| Paper Type | Theory |
| Booklet | Mark Scheme 5 |


| Time Allowed: | 73 minutes |  |
| :--- | :--- | :--- |
| Score: | $/ 61$ |  |
| Percentage: | $/ 100$ |  |

Grade Boundaries:

| A* | A | B | C | D | E | U |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $>85 \%$ | $777.5 \%$ | $70 \%$ | $62.5 \%$ | $57.5 \%$ | $45 \%$ | $<45 \%$ |

1. (a) (i)

| halogen | melting <br> point $/{ }^{\circ} \mathrm{C}$ | colour |
| :---: | :---: | :---: |
| chlorine | -10 | green, yellow or <br> greenish-yellow |
| bromine | -7 | orang or red or brown |
| iodine | 114 | grey |
| accept black |  |  |

chlorine and bromine both correct iodine correct for solid
(ii) down the Group
there are more electrons in the molecule
hence stronger van der Waals' forces
(b)
(i)

| chlorine | ${ }^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$ |
| :---: | :--- |
| bromine | ${ }^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{5}$ |
| or | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{5}$ |

(ii)

(c) (i) gas or low boiling liquid

BrCl has fewer electrons than $\mathrm{Br}_{2}$ hence weaker van der Waals' forces
(ii) accept colours in the range yellow, orange, red, brown
(d) (i) initially solution begins to turn yellow/brown
after several minutes black/dark grey solid formed
(ii) $\mathrm{Cl}_{2}+2 \mathrm{KI} \rightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$
(iii) $\mathrm{BrCl}+2 \mathrm{KI} \rightarrow \mathrm{KCl}+\mathrm{KBr}+\mathrm{I}_{2}$
(iv) as oxidising agents
2. (a) a (d-block) element forming stable ions/compounds/oxidation states with incomplete/ partially filled [NOT empty] d-orbitals
(b) (i) $\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{3} 4 s^{2}$
(ii) $\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{9}$
(c) (+)2, (+)3, (+)4, (+)5 or II, III, IV, V
(d) (pale blue solution $\Rightarrow$ ) blue/cyan solid/ppt.(or (s) in the formula)
(blue ppt. is) $\mathrm{Cu}(\mathrm{OH})_{2}$ or copper hydroxide
(then produces a) deep blue or purple solution
which contains $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ or $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$
formed by ligand replacement
(e) $\quad 2 \mathrm{VO}_{3}^{-}+8 \mathrm{H}^{+}+\mathrm{Cu} \longrightarrow 2 \mathrm{VO}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cu}^{2+}$ or $2 \mathrm{VO}_{2}^{+}+4 \mathrm{H}^{+}+\mathrm{Cu} \longrightarrow 2 \mathrm{VO}^{2+}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cu}^{2+}$ correct species
balancing
(award only [1] for just the two half-equations)
3. (a) same proton number/atomic number different mass number/nucleon number
(b) $A_{r}=\frac{(24 \times 78.60)+(25 \times 10.11)+(26 \times 11.29)}{100}$

$$
=\frac{1886.4+252.75+293.54}{100}=\frac{2432.69}{100}
$$

which gives $A_{r}=24.33$
(c)

| isotopes | number of |  |  |
| :---: | :---: | :---: | :---: |
|  | protons | ne | electrons |
| ${ }^{226} \mathrm{Ra}$ |  | 138 | 88 |
| ${ }^{238} \mathrm{U}$ | 9 | 146 | 92 |

allow one mark for each correct column
if there are no correct columns,
allow maximum one mark for a correct row
(d) (i) $\mathrm{Ra}^{2+}$
(ii) less than $(502+966)$ allow answers in the range $1000-1400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
ionisation energies decrease down the Group
or must be less than IE for $\mathrm{Ba} \rightarrow \mathrm{Ba}^{2+}$
or size of atom increases down Group/
electrons are further away from nucleus
or there is increased shielding down Group
allow ecf on answer to (i)
4. (a)

|  | 1 s | 2 s |  | 2 p | 3 s |  |  | 3 p | 3 d |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 s |  | 4 p | 4 d |  |  |  |  |  |  |
| Ca | 2 | 2 | 6 | 2 | 6 | 0 | 2 | 0 | 0 |
| $\mathrm{Sr}^{2+}$ | 2 | 2 | 6 | 2 | 6 | 10 | 2 | 6 |  |

(b) (i) more shells of electrons
(ii) outermost shell has been removed
(iii) outermost electrons are further from nucleus/there are more shells increased shielding
(c) (i) very slow reaction
formation of bubbles of gas
$\mathrm{Mg}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MgO}+\mathrm{H}_{2}$
allow $\mathrm{Mg}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
(ii) faster reaction than with Mg
white suspension formed
or evolution of gas
or calcium dissolves/disappears
$\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
allow 1 mark in (i) or (ii) if gas is described as colourless
(d) (i) gas evolved
gas is brown
(ii) $2 \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{SrO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
correct products
balanced equation


