

### Phone: +442081445350

www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

# CHEMISTRY PHYSICAL CHEMISTRY

| Level & Board   | CIE (A-LEVEL)    |
|-----------------|------------------|
|                 |                  |
| TOPIC:          | CHEMICAL BONDING |
|                 |                  |
| PAPER TYPE:     | SOLUTION - 1     |
|                 |                  |
| TOTAL QUESTIONS | 9                |
|                 |                  |
| TOTAL MARKS     | 83               |

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

#### www.chemistryonlinetuition.com

### CHEMICAL BONDING

## 1)

(a) The relative atomic mass of an element,  $A_r$  is defined as

 $A_r = 12 \times \frac{Average \text{ mass of one atom of the element}}{Mass of one atom of 12_C}$ 

(b)  $A_r = \frac{80 \times 2.6 + 82 \times 11.6 + 83 \times 11.5 + 84 \times 56.9 + 86 \times 17.4}{100} = 83.9$ 

(c) Assume ideal gas behavior,

 $(2.00 \times 10^4)(104 \times 10^{-6}) = n \times 8.31 \times 305$ 

$$n = 8.21 \times 10^{-4} mol$$

$$\therefore \ M = \frac{0.100}{8.21 \times 10^4} = 122 \ g \ mol^{-1}$$

Hence, the relative molecular mass of A is 122.

∴ 122 – 83.9 = 38.1

Thus is equivalent to 2F atoms  $(2 \times 19)$ .

Hence, A is KrF<sub>2</sub>.

- (d) (i)  $F_{x} \xrightarrow{x} F_{y} \xrightarrow{x} F_{z}$   $F_{x} \xrightarrow{x} F_{y} \xrightarrow{x} F_{z}$  $F_{x} \xrightarrow{x} F_{y} \xrightarrow{x} F_{z}$
- (ii) Square planar.
- (iii) To balance O, a = 2
- To balance Xe, b =4.

To balance F (or H), c = 24.

2)

$$\begin{bmatrix} \circ \circ \\ \circ & \mathsf{F} \\ & \mathsf{F} \\$$

3)

(a) (i) There are 3 region of electron clouds around B (with no lone pair). To minimize electronic repulsion, they are directed in a trigonal planar manner.

Hence, BF<sub>3</sub> is trigonal planar.



(ii) A dative bond is formed between N and b where n uses its lone pair of

electron, while B has a vacant orbital to accept it.



(b) (i) Relative atomic mass is the ratio of the average mass of an atom to  $\frac{1}{2}$ 

The mass of a <sup>12</sup>C isotope.

| m/e | lon                                           |  |  |
|-----|-----------------------------------------------|--|--|
| 45  | <sup>10</sup> B <sup>35</sup> Cl <sup>+</sup> |  |  |
| 46  | <sup>11</sup> B <sup>35</sup> Cl <sup>+</sup> |  |  |
| 47  | <sup>10</sup> B <sup>37</sup> Cl <sup>+</sup> |  |  |
| 48  | <sup>11</sup> B <sup>37</sup> Cl <sup>+</sup> |  |  |

- (iii) mass = 11.009 + 34.969 = 45.978 (g mol<sup>-1</sup>)
- (iv) let x be the fraction of <sup>10</sup>B

Using peaks at m/e = 45 and 46,

$$\frac{abundance \ ofm/e \ = 45}{abundance \ ofm/e \ = 46} = \frac{x}{(1-x)} = \frac{3}{12}$$

$$12x = 3(1-x)$$

Relative atomic mass of boron =  $0.2 \times 10.013 + 0.8 \times 11.009 = 10.81$ 

4)

(a) (i) between  $117^{\circ}$  and  $120^{\circ}$ 

Somy !!!(ii)



www.chemistryonlinetuition.com

(iii) between  $107^{\circ}$  and  $109^{\circ}$ 

(b) Ethene molecules offer vander wall's forces and hydrazine has hydrogen Bonds among these molecules. Hydrogen bonds are stronger than wander Wall's forces, therefore, melting point and boiling points of hydrazine are Much higher than those of ethene.

(c) Ethanol and hydrazine have dipoles as shown.



Oxygen atom of alcohol and hydrogen of hydrazine bond together.

H

(d) (i)

 $CH_2 = CH_2$   $HCI \longrightarrow CH_2 - CH_2$ 

(ii) Electrophilic addition

(iii) C2H5Cl molecule is a saturated compound and there is no possibility of

С

Further addition.

(e) (i) acid – base reaction

(ii) Nitrogen atom has a lone pair of electrons to make

Dative bond with H+ Ion.

(iii) There are two nitrogen atoms in hydrazine and each nitrogen Atom has a lone pair of electrons to make a dative bond with H+ Ion.



(b) (i) Electrostatic attraction between bonding electrons and positive nuclei of

the atoms.

(ii)



#### am Sorry !!!!!

(c) (i) When bonding electrons are unequally shared, the molecule has a dipole

### Character.

(ii) Chlorine atom being more electronegative

than hydrogen,

Gets a partial negative charge and hydrogen atom gets

Partial positive charge.

(d)



(e)  $\Delta H(C_2H_4) = \Delta H_{C(R)} - \Delta H_{C(P)}$ 

$$= [2\Delta_{(c)} + 2\Delta H_{C} (H_{2})] - [\Delta_{C}(C_{2}H_{4})]$$

= 51.80

 $\therefore H_f^{\theta}$  = 51.80 KJ mol<sup>-1</sup>

I am Sorry !!!!!



(d) Hydrogen bonding exist between H2O molecules.

Hydrogen bonds can not form between C2H5 – O – C2H5 molecules because

Oxygen and hydrogen are not directly bonded.

am Sorry !!!!!

(a) 
$$HF \rightleftharpoons H^+ + F^-$$

$$\implies K_a = \frac{[H^+](F^-)}{[HF]}$$

HF behaves as a weak acid I water.

 $\therefore [H^{+}][F^{-}],$   $\Rightarrow K_{a} = \frac{[H^{+}](F^{-})}{[HF]} \Rightarrow [H^{+}]^{2} = [HF]K_{a}.$   $\Rightarrow [H^{+}]^{2} = 5.6 \times 10^{-4} \times 0.05$   $\Rightarrow [H^{+}] = \sqrt{5.6 \times 10^{-4} \times 0.05} = 0.00529$ 

 $pH = -log_{10}[H^+]$ 

$$= -\log_{10}(0.00529) = 2.277 = 2.3$$

(b) (i) Neutralisation reaction.

I am Sorry !!!!!



NH<sub>3</sub> has covalent bonding. HF has covalent bonding. NH<sub>4</sub>F has ionic,

Covalent and dative bonding.

(iii) Covalent bonding occurs between N & H.

Dative bonding occurs between N & H.

Ionic bonding occurs between  $N_4^+$  & F<sup>-</sup>

(iv) High temperature: Increasing the temperature would favour the reverse.

Reaction as it is endothermic.

Low pressure: Lovering the pressure would favour the reverse reaction which

would cause an increase in the number of gaseous molecules

8)

(a) Volatility:  $Cl_2 > Br_2 > l_2$ 

Reason: Down the group the number of electrons increases causing

The van der waal's forces of attraction to increase. Therefore the

Volatility of the halogens decreases down the group.

(b) (i) H<sub>2</sub>O has a higher boiling point due to H – bonding in H<sub>2</sub>O. However, there is no H - bonding in H<sub>2</sub>S.



(ii)

www.chemistryonlinetuition.com

(ii)  $CH_3 - O - CH_3$  has a higher boiling point than  $CH_3 - CH_2 - CH_3$  since

 $CH_3$  – O –  $CH_3$  is polar, and  $CH_3$  –  $CH_2$  –  $CH_3$  is not.

(c)  $SF_6$  has 6 bonding pairs and no lone pairs.

The shape is octahedral.



(iii) 90<sup>0</sup>

| number of bond | number of | shape of molecule | formula of a     |
|----------------|-----------|-------------------|------------------|
| pairs          | lon pairs | TION              | molecule with    |
|                |           |                   | this shape       |
| 3              | 0         | Trigonal planar   | BH <sub>3</sub>  |
| 4              | 0         | Tetrahedral       | $CH_4$           |
| 3              | 1         | Trigonal pyramids | NH <sub>3</sub>  |
| 2              | 2         | Bent / V - sound  | H <sub>2</sub> O |



# DR. ASHAR RANA M.B.B.S / MS. CHEMISTRY



- Founder & CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE & EDEXCEL Examiner since 2015
- $\boldsymbol{\cdot}$  Chemistry, Physics, Math's and Biology Tutor

## CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- $\cdot \ {\sf Email: asherrana@chemistryonlinetuition.com}$
- Address: 210-Old Brompton Road, London SW5 OBS, UK