## **States of Matter**

## Mark Scheme 1

**Level** International A Level

**Subject** Chemistry

Exam Board CIE

**Topic** States of Matter

Sub-Topic

Paper Type Theory

Booklet Mark Scheme 1

Time Allowed: 65 minutes

Score: /54

Percentage: /100

## **Grade Boundaries:**

| A*   | А      | В   | С     | D     | E   | U    |
|------|--------|-----|-------|-------|-----|------|
| >85% | 777.5% | 70% | 62.5% | 57.5% | 45% | <45% |

|                 |                                                                                                                                                                            | T          | l    |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|--|--|
| 1 <b>(a (i)</b> | Straight line drawn horizontally from same intercept                                                                                                                       | [1]        | [1]  |  |  |
| (ii)            | T <sub>1</sub> because it shows greatest deviation/furthest from ideal                                                                                                     | [1]        | [1]  |  |  |
| (iii)           | reducing <i>T</i> (reduces KE of particles) so intermolecular forces of attraction become more significant                                                                 | [1]        | [1]  |  |  |
| (iv)            | greatest deviation is at high pressure increasing pressure decreases volume so volume of particles becomes more significant ora                                            |            |      |  |  |
|                 |                                                                                                                                                                            |            |      |  |  |
| (b)             | Mass of air = $100 \times 0.00118$ = $0.118g$<br>Mass of flask = $47.930 - 0.118$ = $47.812g$<br>Mass of Y = $47.989 - 47.812$ = $0.177g$<br>$pV = nRT = \frac{m}{M_r} RT$ | [1]<br>[1] |      |  |  |
|                 | $M_r = \frac{mRT}{pV} = \frac{0.177 \times 8.31 \times 299}{1 \times 10^5 \times 100 \times 10^{-6}}$ $= 44.0 \text{ (43.979 to 2 or more sf)}$                            | [1]        | [4]  |  |  |
| (c) (i)         | strong triple bond                                                                                                                                                         |            |      |  |  |
| (ii)            | high temperature (needed for reaction between N <sub>2</sub> and O <sub>2</sub> )                                                                                          | [1]        | [1]  |  |  |
| (iii)           | $2NO + 2CO \rightarrow N_2 + 2CO_2$ $\mathbf{OR} \ 2NO + C \rightarrow N_2 + CO_2$                                                                                         | [1]        | [1]  |  |  |
| (iv)            | $4NO_2 + 2H_2O + O_2 \rightarrow 4HNO_3$                                                                                                                                   | [1]        | [1]  |  |  |
| (v)             | $NO + \frac{1}{2}O_2 \rightarrow NO_2$                                                                                                                                     | [1]        |      |  |  |
|                 | $NO_2 + SO_2 \rightarrow NO + SO_3$<br>$OR NO_2 + SO_2 + H_2O \rightarrow NO + H2SO_4$                                                                                     | [1]        | [2]  |  |  |
|                 |                                                                                                                                                                            |            | [15] |  |  |

2 (a any two from: molecules have negligible volume

negligible intermolecular forces *or* particles are not attracted to each other *or* to the walls of the container

random motion

no loss of **kinetic** energy during collisions *or* elastic collisions (NOT

elastic molecules)

2 × [1]

[2]

(b) low temperature **and** high pressure

both required [1]

(ii) (at low T) forces between particles are more important,

[1]

[1]

(at high P) volume of molecules are significant

[3 max 2]

- endothermic; because the equilibrium moves to the right on heating *or* with increasing temperature *or* because bonds are broken during the reaction [1]
  - (ii) e.g. halogenation or Friedel-Crafts alkylation/acylation



reactants [1]

products [1]

other possibilities: Cl<sub>2</sub>, I<sub>2</sub>, R-Cl, RCOCl etc.

producto [1

[Total: 7]

[3]

3 (a) diamond and graphite [1] (ii) any three from graphite diamond black /colourless colour transp electrical conductivity good conductor non-conductor soft/slippery /non slippery hardness less dense than density more dense than graphite diamond melting point lower h 3 × [1] [4] (b) Because each carbon is only bonded to 3 others or is unsaturated/doubly-bonded/sp<sup>2</sup> or has 3 bonding locations (NOT forms only 3 bonds) [1  $C_{60}H_{60}$ [1] [2] Number of atoms carbon present =  $0.001 \times 6.02 \times 10^{23} / 12 = 5.02 \times 10^{19}$ (c) [1] (ii) Number of hexagons present =  $5.02 \times 10^{19} / 2 = 2.51 \times 10^{19}$ Area of sheet =  $690 \times 2.51 \times 10^{19} = 1.73 \times 10^{22} \text{ nm}^2$ [1] (iii) Graphene: Yes, since it has free/delocalised/mobile electrons [1] Buckminsterfullerene: No, (although there is delocalisation within each sphere) it consists of separate/simple/discrete molecules/spheres/particles, (so no delocalisation from one sphere to the next) or electrons are trapped within each molecule/sphere

[4]

[Total: 10]

4 **(a** alkanes/paraffins **not** hydrocarbon

(1) [1]

(b) 2  $C_{14}H_{30}$  + 43  $O_2$   $\rightarrow$  28  $CO_2$  + 30  $H_2O$  or

$$C_{14}H_{30}$$
 +  $^{43}I_{2}O_{2} \rightarrow$  14  $CO_{2}$  + 15  $H_{2}O$ 

(1 [1]

(c) (i) mass of C<sub>14</sub>H<sub>30</sub> burnt

(1)

(ii) mass of CO<sub>2</sub> produced

$$M_{\rm r}$$
 of C<sub>14</sub>H<sub>30</sub> = (14 x 12 + 30 x 1) = 198

(1)

 $2 \times 198 \text{ t of } C_{14}H_{30} \rightarrow 28 \times 44 \text{ t of } CO_2$ 

88.5 t of 
$$C_{14}H_{30} \rightarrow \underline{28 \text{ x } 44 \text{ x } 88.5}$$
  
2 x 198

(1)

$$= 275.3 \text{ t of } CO_2$$

(1)

allow 275.4 t if candidate has used 88.506 allow ecf on wrong value for  $M_{\rm r}$  of  $C_{14}H_{30}$ 

[4]

(d)  $n = \frac{PV}{RT} = \frac{6 \times 10^5 \times 710 \times 10^{-6}}{8.31 \times 293}$ 

(1)

(1)

(e)  $P = \frac{nRT}{V} = \frac{0.175 \times 8.31 \times 278}{V}$ 

(1)

$$= 569410.5634 \text{ Pa} = 5.7 \times 10^5$$

[2]

(1)

allow ecf on (d)

[Total: 10]

| 5 <b>(a</b> | there are no inter-molecular forces present between ideal gas molecules ideal gas molecules have no volume collisions between ideal gas molecules are perfectly elastic |                   |     |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|
|             | ideal gas molecules behave as rigid spheres                                                                                                                             | (any 2)           | [2] |
| (b          | ) high temperature low pressure                                                                                                                                         | (1)<br>(1)        | [2] |
| (c)         | ) mo ideal neon nitrogen ammonia least ideal nitrogen has stronger van der Waals' forces than argon ammonia has hydrogen bonding as well as van der Waals' forces       | (1)<br>(1)<br>(1) | [3] |
| (d          | ) with increasing temperature, average kinetic energy of molecules increases intermolecular forces are more easily broken                                               | (1)<br>(1)        | [2] |
| (e)         | ) 18                                                                                                                                                                    | (1)               |     |
| (f)         | ( both have very similar/same van der Waals' forces                                                                                                                     | (1)               |     |
|             | (ii) CH <sub>3</sub> F has permanent dipole                                                                                                                             | (1)               | [2] |
|             |                                                                                                                                                                         | [Total:           | 12] |