States of Matter

Mark Scheme 1

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	States of Matter
Sub-Topic	
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:

Score:
Percentage:

65 minutes
/54
/100

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	777.5%	70%	62.5%	57.5%	45%	$<45 \%$

1 (a) (i)	Straight line drawn horizontally from same intercept	[1]	[1]
(ii)	T_{1} because it shows greatest deviation/furthest from ideal	[1]	[1]
(iii)	reducing T (reduces KE of particles) so intermolecular forces of attraction become more significant	[1]	[1]
(iv)	greatest deviation is at high pressure increasing pressure decreases volume so volume of particles becomes more significant ora	[1] [1]	[2]
(b)	Mass of air $=100 \times 0.00118=0.118 \mathrm{~g}$ Mass of flask $=47.930-0.118=47.812 \mathrm{~g}$ Mass of $\mathrm{Y} \quad=47.989-47.812=0.177 \mathrm{~g}$ $\begin{aligned} p V=n R T & =\frac{m}{M_{r}} R T \\ M_{r}=\frac{m R T}{p V} & =\frac{0.177 \times 8.31 \times 299}{1 \times 10^{5} \times 100 \times 10^{-6}} \\ & =44.0 \text { (} 43.979 \text { to } 2 \text { or more sf) } \end{aligned}$	[1] [1] [1] [1]	[4]
(c) (i)	strong triple bond	[1]	
(ii)	high temperature (needed for reaction between N_{2} and O_{2})	[1]	[1]
(iii)	$\begin{aligned} & 2 \mathrm{NO}+2 \mathrm{CO} \rightarrow \mathrm{~N}_{2}+2 \mathrm{CO}_{2} \\ & \mathrm{OR} 2 \mathrm{NO}+\mathrm{C} \rightarrow \mathrm{~N}_{2}+\mathrm{CO}_{2} \end{aligned}$	[1]	[1]
(iv)	$4 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \rightarrow 4 \mathrm{HNO}_{3}$	[1]	[1]
(v)	$\begin{aligned} & \mathrm{NO}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{NO}_{2} \\ & \mathrm{NO}_{2}+\mathrm{SO}_{2} \rightarrow \mathrm{NO}+\mathrm{SO}_{3} \\ & \mathrm{OR} \mathrm{NO}_{2}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{SO}_{4} \end{aligned}$	[1] [1]	[2]
			[15]

2 (a any two from: molecules have negligible volume
negligible intermolecular forces or particles are not attracted to each other or to the walls of the container random motion no loss of kinetic energy during collisions or elastic collisions (NOT elastic molecules)
(b) low temperature and high pressure both required [1]
(ii) (at low T) forces between particles are more important,
(at high P) volume of molecules are significant
(c) endothermic; because the equilibrium moves to the right on heating or with increasing temperature or because bonds are broken during the reaction
(ii) e.g. halogenation or Friedel-Crafts alkylation/acylation

other possibilities: $\mathrm{Cl}_{2}, \mathrm{I}_{2}, \mathrm{R}-\mathrm{Cl}, \mathrm{RCOCl}$ etc.
[Total: 7]

3 (a) diamond and graphite
(ii) any three from

	graphite	diamond colour
transp /colourless		
electrical conductivity	good conductor	non-conductor
hardness	soft/slippery	/non slippery density
less dense than	more dense than graphite	
melting point	diamond	
lower	h	

(b) Because each carbon is only bonded to 3 others or is unsaturated/doubly-bonded/ sp^{2} or has 3 bonding locations
(NOT forms only 3 bonds)
$\mathrm{C}_{60} \mathrm{H}_{60}$
(c) Number of atoms carbon present $=0.001 \times 6.02 \times 10^{23} / 12=5.02 \times 10^{19}$
(ii) Number of hexagons present $=5.02 \times 10^{19} / 2=2.51 \times 10^{19}$

Area of sheet $=690 \times 2.51 \times 10^{19}=1.73 \times \mathbf{1 0}^{22} \mathbf{n m}^{2}$
(iii) Graphene: Yes, since it has free/delocalised/mobile electrons

Buckminsterfullerene: No, (although there is delocalisation within each sphere) it consists of separate/simple/discrete molecules/spheres/particles, (so no delocalisation from one sphere to the next)
or electrons are trapped within each molecule/sphere

4 (a alkanes/paraffins not hydrocarbon
(b) $2 \mathrm{C}_{14} \mathrm{H}_{30}+\mathbf{4 3} \mathrm{O}_{2} \rightarrow \mathbf{2 8} \mathrm{CO}_{2}+\mathbf{3 0 \mathrm { H } _ { 2 } \mathrm { O } \text { or }}$

$$
\mathrm{C}_{14} \mathrm{H}_{30}+{ }^{43} /{ }_{2} \mathrm{O}_{2} \rightarrow 14 \mathrm{CO}_{2}+15 \mathrm{H}_{2} \mathrm{O}
$$

(c) (i) mass of $\mathrm{C}_{14} \mathrm{H}_{30}$ burnt

$$
\begin{equation*}
\frac{8195 \times 10.8}{1000}=88.506=88.5 \mathrm{t} \tag{1}
\end{equation*}
$$

(ii) mass of CO_{2} produced
M_{r} of $\mathrm{C}_{14} \mathrm{H}_{30}=(14 \times 12+30 \times 1)=198$
$2 \times 198 \mathrm{t}$ of $\mathrm{C}_{14} \mathrm{H}_{30} \rightarrow 28 \times 44 \mathrm{t}$ of CO_{2}
$88.5 t$ of $\mathrm{C}_{14} \mathrm{H}_{30} \rightarrow \frac{28 \times 44 \times 88.5}{2 \times 198}$
$=275.3 \mathrm{t}$ of CO_{2}
allow 275.4 t if candidate has used 88.506
allow ecf on wrong value for M_{r} of $\mathrm{C}_{14} \mathrm{H}_{30}$
(d) $n=\frac{P V}{R T}=\frac{6 \times 10^{5} \times 710 \times 10^{-6}}{8.31 \times 293}$

$$
\begin{equation*}
=0.175 \tag{1}
\end{equation*}
$$

(e) $P=\frac{n R T}{V}=\frac{0.175 \times 8.31 \times 278}{710 \times 10^{-6}}$

$$
\begin{equation*}
=569410.5634 \mathrm{~Pa}=5.7 \times 10^{5} \tag{1}
\end{equation*}
$$

allow ecf on (d)

5 (a there are no inter-molecular forces present between ideal gas molecules ideal gas molecules have no volume collisions between ideal gas molecules are perfectly elastic ideal gas molecules behave as rigid spheres
(b) high temperature
low pressure
(c) mo ideal neon..... nitrogen..... ammonia..... least ideal
nitrogen has stronger van der Waals' forces than argon ammonia has hydrogen bonding as well as van der Waals' forces
(d) with increasing temperature, average kinetic energy of molecules increases intermolecular forces are more easily broken
(e) 18
(f) (both have very similar/same van der Waals' forces
(ii) $\mathrm{CH}_{3} \mathrm{~F}$ has permanent dipole

