States of Matter

Mark Scheme 3

Level International A Level

Subject Chemistry

Exam Board CIE

Topic States of Matter

Sub-Topic

Paper Type Theory

Booklet Mark Scheme 3

Time Allowed: 64 minutes

Score: /53

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

(a)
$$\frac{x}{H^{+}_{O}C^{+}_{O}C^{+}_{O}C^{+}_{A}H}$$
 (1) [1]

(b) $n = \frac{PV}{RT} = (1515 \times 10^{3}) \times (76 \times 10^{3})$ (1) [2]

$$= 46.5 \qquad (1) \qquad [2]$$
(c) $(CaC_{2} + 2H_{2}O \rightarrow Ca(OH)_{2} + C_{2}H_{2})$ (1)

(ii) $n(C_{2}H_{2}) = n(CaC_{2}) = 100 \times 46.5$ (1)

mass of $CaC_{2} = 100 \times 46.5 \times 64 = 297.570 \text{ g}$

$$= 297.6 \text{ kg (accept 298 kg)}$$
correct units necessary (1)

allow e.c.f. on candidate's answer in (b) [3]

(d) $C_{2}H_{2}(g) + {}^{5}I_{2}O_{2}(g) \rightarrow 2CO_{2}(g) + H_{2}O(g)$
bonds broken: $2(H-C) = 2 \times 410 = 820$

$$C-C = 840 = 840$$

$${}^{5}I_{2}(O-O) {}^{5}I_{2} \times 496 = \frac{1240}{2900} \text{ kJ mol}^{-1}$$
 (1)

bonds made: $4(C-O) = 4 \times 7 = 2960$

$$2(O-H) = 2 \times 460 = \frac{920}{3880} \times \frac{1}{2} \times \frac{1$$

or average bond energy terms are used in the Data Booklet

(1)

[3]

[Total: 12]

2	(a)		The volume of the gas molecules / atoms / particles is insignificant compared with the volume of the vessel. There are no forces of attraction between the gas molecules.			
			All collisions by the gas molecules a	are perfectly elastics. Ar	ny <u>two</u> . [2]	
	(b)	(The pressure of / exerted by the gas Pa / Nm -2	<u>S</u> .	[1] [1]	
		(ii)	The volume of the containing vessel m³ / dm³ / cm³	I	[1] [1]	
		(iii)	The absolute temperature In K <u>or</u> 273 + °C		[1] [1]	
	(c)	(i)	pV≈w/m x RT			
			m = (0.103 x 8.31 x 297) / (99.5 x 10 = 40.0	O ³ x 63.8 x 10 ⁻⁶)	[1] [1]	
			The gas is argon		[1]	
		(ii)	The hydrogen bonds between ammer are stronger than the Van De Wa		₂ and Ar molecules (1)	
			Ammonia is polar / has a dipole (1)			
			(Any two)		[2]	
					Total = [13]	

CHEMISTRY ONLINE

— TIITION —

- 3 **(a) (i)** That the volume of the gas molecules is negligible compared to the volume of gas (1)
 - (ii) That there are no intermolecular forces
 OR collisions of the molecules are perfectly elastic
 Particles are in constant motion, losing no energy on collision (1) any two [2]

(b)
$$6.02 \times 10^{23}$$
 (1) [1]

(c) (i)
$$r = 0.192 \text{ nm}$$
 (1) Assume most candidat $v = 4 \times 3.14 \times (1.92 \times 10^{-9})^3 = 2.96 \times 10^{-26} \text{ dm}^3 (2.96 \times 10^{-29} \text{ m}^3) (1)$

(ii)
$$2.96 \times 10^{-26} \times \frac{6.02 \times 10^{23}}{10^{23}} = 1.78 \times 10^{-2} \text{ dm}^3 = (1.78 \times 10^{-5} \text{ m}^3) = 1.78 \times 10^{-2} \text{ dm}^3 = (1.78 \times 10^{-5} \text{ m}^3) = 1.78 \times 10^{-2} \text{ dm}^3 = (1.78 \times 10^{-2} \text{ dm}^3) = (1.78 \times 10^{$$

- (iii) 24 dm³ (0.024 m³) (1)
- (iv) $\frac{1.78 \times 10^{-2} \times 10^2}{24} = 0.074\%$ (1)
- (v) Some statement which connects with (a) (i) above (1) max [5]
- hot metals will react with oxygen in air (or nitrogen)
 - to form oxides/will burn out/to a powder
 - argon will not react
 - at high temperatures O_2 and N_2 in air will react to give NO_x NOT expansion of gases on heating any two [2]

[Total: 10]

Qu	estion	Scheme	Marks	Т
4	(a)	$CH_4 + H_2O \rightarrow CO + 3H_2$	1	[1
	(b)	Label on graph indicating catalysed and uncatalysed Ea OR statement Ea catalysed is lower (than Ea uncatalysed) owtte	1	
		Reference to catalyst creating alternative mechanism / reaction pathway / route	1	
		Idea that more molecules have sufficient energy (to react)	1	
		so greater chance / frequency of successful collisions	1	[4]
	(c)	н	1	
		angle = 107° shape = (trigonal) pyramid(al)	1	[3]
	(d) (i)	Advantage = higher rate Greater Kinetic Energy / speed / collision frequency / proportion of successful collisions	1	
		Disadvantage – reduced yield / less product / more reactants	1	
		(Forward reaction) exothermic AND (hence in accordance with Le Chatelier's Principle) equilibrium / reaction shifts left (to counteract increasing temp) ora	1	[4]
	(ii)	$K_{p} = \frac{pNH_{3}^{2}}{pN_{2} \times pH_{2}^{3}}$	1	[1]

(iii)	$N_2(g) + 3H_2(g) = 2NH_3(g)$ 2 3 0 $(-0.8) (-1.6 \times 3/2)$ 1.2 0.6 1.60 $xNH_3 = 1.6/3.4 (= 0.471)$ $xN_2 = 1.2/3.4 (= 0.353)$ $xH_2 = 0.6/3.4 (= 0.176)$	1	
	$K_p = \frac{0.471^2 \times (2 \times 10^7)^2}{0.353 \times 2 \times 10^7 \times 0.176^3 \times (2 \times 10^7)^3} = 2.88 \times 10^{-13} \text{ Pa}^{-2}$	1+1	[5]
			[18]

CHEMISTRY ONLINE — TUITION —