States of Matter

Mark Scheme 3

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	States of Matter
Sub-Topic	
Paper Type	Theory
Booklet	Mark Scheme 3

Time Allowed:

Score:
Percentage:

64 minutes
/53
/100

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	777.5%	70%	62.5%	57.5%	45%	$<45 \%$

1
(a)

(b) $n=\frac{P V}{R T}=\frac{\left(1515 \times 10^{3}\right) \times}{8.31 \times 298}\left(76 \times 10^{-3}\right)$

$$
=46.5
$$

(c) $\left(\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{2}\right.$
(ii) $n\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)=n\left(\mathrm{CaC}_{2}\right)=100 \times 46.5$
mass of $\mathrm{CaC}_{2}=100 \times 46.5 \times 64=$

$$
=297570 \mathrm{~g}
$$

$$
=297.6 \text { kg (accept } 298 \text { kg) }
$$

correct units necessary
allow e.c.f. on candidate's answer in (b)
(d) $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 / \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
bonds broken: 2(H-C) $2 \times 410=820$
$\mathrm{C} \equiv \mathrm{C} 840=840$

$$
5 / 2(\mathrm{O}=\mathrm{O}) \frac{5}{2} \times 496=\frac{1240}{2900} \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

bonds made: $4(\mathrm{C}=\mathrm{O}) 4 \times 7=2960$
$2(\mathrm{O}-\mathrm{H}) 2 \times 460=\underline{920}$

$$
\begin{equation*}
3880 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1}
\end{equation*}
$$

$\Delta H_{\text {comb }}=-3880+2900=-980 \mathrm{~kJ} \mathrm{~mol}^{-1}$
allow e.c.f. on incorrect bonds made/broken
(e) (i) the enthalpy/energy change when one mole of a substance
is burned in an excess of air/oxygen
or completely combusted
under standard conditions
(ii) calculation in (d) includes $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ whereas $\Delta H_{\text {comb }}$ involves $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ or average bond energy terms are used in the Data Booklet

2 (a) The volume of the gas molecules / atoms / particles is insignificant compared with the volume of the vessel.
There are no forces of attraction between the gas molecules.
All collisions by the gas molecules are perfectly elastics. Any two.
(b) (The pressure of / exerted by the gas.
$\mathrm{Pa} / \mathrm{Nm}^{-2}$
(ii) The volume of the containing vessel
$\mathrm{m}^{3} / \mathrm{dm}^{3} / \mathrm{cm}^{3}$
(iii) The absolute temperature

In K or $273+{ }^{\circ} \mathrm{C}$
(c) (i) $\mathrm{pV} \approx \mathrm{w} / \mathrm{m} \times \mathrm{RT}$

$$
\begin{aligned}
\mathrm{m} & =(0.103 \times 8.31 \times 297) /\left(99.5 \times 10^{3} \times 63.8 \times 10^{-6}\right) \\
& =40.0
\end{aligned}
$$

The gas is argon
(ii) The hydrogen bonds between ammonia molecules (1) are stronger than the Van De Waals' forces between N_{2} and Ar molecules (1)

Ammonia is polar / has a dipole (1)
(Any two)

3 (a) (i) That the volume of the gas molecules is negligible compared to the volume of gas
(ii) That there are no intermolecular forces

OR collisions of the molecules are perfectly elastic Particles are in constant motion, losing no energy on collision (1) any two [2]
(b) $6.02 \times 10^{23}(1)$
(c) (i) $r=\underline{0.192} \mathrm{~nm}$ (1) Assume most candidat

3

$$
\mathrm{v}=4 \times 3.14 \times\left(1.92 \times 10^{-9}\right)^{3}=2.96 \times 10^{-26} \mathrm{dm}^{3}\left(2.96 \times 10^{-29} \mathrm{~m}^{3}\right)(1)
$$

$$
3
$$

(ii) $2.96 \times 10^{-26} \times \underline{6.02 \times 10^{23}}(1)=1.78 \times 10^{-2} \mathrm{dm}^{3}\left(1.78 \times 10^{-5} \mathrm{~m}^{3}\right)(1)$
(iii) $24 \mathrm{dm}^{3}\left(0.024 \mathrm{~m}^{3}\right)(1)$
(iv) $\frac{1.78 \times 10^{-2} \times 10^{2}}{24}=0.074 \%$
(v) Some statement which connects with (a) (i) above (1)
\max [5]
(d) - hot metals will react with oxygen in air (or nitrogen)

- to form oxides/will burn out/to a powder
- argon will not react
- at high temperatures O_{2} and N_{2} in air will react to give NO_{x}

NOT expansion of gases on heating any two
[Total: 10]

Question	Scheme	Marks	T
$4 \quad$ (a)	$\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2}$	1	[1
(b)	Label on graph indicating catalysed and uncatalysed Ea OR statement Ea catalysed is lower (than Ea uncatalysed) owtte Reference to catalyst creating alternative mechanism / reaction pathway / route Idea that more molecules have sufficient energy (to react) so greater chance / frequency of successful collisions	1 1 1 1	[4]
(c)	 angle $=107^{\circ}$ shape $=($ trigonal $)$ pyramid(al)	1 1 1	[3]
(d) (i)	Advantage = higher rate Greater Kinetic Energy / speed / collision frequency / proportion of successful collisions Disadvantage - reduced yield / less product / more reactants (Forward reaction) exothermic AND (hence in accordance with Le Chatelier's Principle) equilibrium / reaction shifts left (to counteract increasing temp) ora	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	[4]
(ii)	$K_{\mathrm{p}}=\frac{\mathrm{pNH}_{3}^{2}}{\mathrm{pN}_{2} \times \mathrm{pH}_{2}^{3}}$	1	[1]

(iii)	$\begin{array}{lll} \mathrm{N}_{2}(\mathrm{~g})+ & 3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons & 2 \mathrm{NH}_{3}(\mathrm{~g}) \\ 2 & 3 & 0 \\ (-0.8) & (-1.6 \times 3 / 2) & \\ \underline{1.2} & \underline{0.6} & 1.60 \end{array}$ $\begin{aligned} & \mathrm{xNH}_{3}=1.6 / 3.4(=0.471) \\ & \mathrm{xN}_{2}=1.2 / 3.4(=0.353) \\ & \mathrm{xH}_{2}=0.6 / 3.4(=0.176) \end{aligned}$ $K_{\mathrm{p}}=\frac{0.471^{2} \times\left(2 \times 10^{7}\right)^{2}}{0.353 \times 2 \times 10^{7} \times 0.176^{3} \times\left(2 \times 10^{7}\right)^{3}}=2.88 \times 10^{-13} \mathrm{~Pa}^{-2}$		1 1 $1+1$	[5]
				[18]

