States of Matter

Mark Scheme 4

Level International A Level

Subject Chemistry

Exam Board CIE

Topic States of Matter

Sub-Topic

Paper Type Theory

Booklet Mark Scheme 4

Time Allowed: 51 minutes

Score: /42

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

1 (a (i) alkanes or paraffins not hydrocarbons (1) (ii) $C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$ (1 [2] (b) (carbon allow graphite (1) (ii) $C_4H_{10} + 5O_2 \rightarrow 8C + 10H_2O$ allow balanced equations which include CO and/or CO_2 (1) [2]

(c) enthalpy change when 1 mol of a substance is burnt in an excess of oxygen/air under standard conditions or is completely combusted under standard conditions

(1) [2]

(1)

(d) $m = \frac{pVM_r}{RT} = \frac{1.01 \times 10^5 \times 125 \times 10^{-6} \times 44}{8.31 \times 293}$ g (1

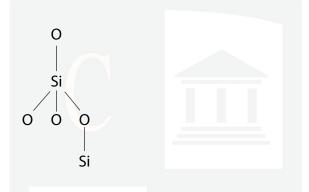
= 0.228147345 g= 0.23 g (1)

(ii) heat released = m c δ T = 200 × 4.18 × 13.8 J (1) = 11536.8 J = 11.5 kJ (1)

(iii) 0.23 g of propane produce 11.5 kJ 44 g of propane produce $\frac{11.5 \times 44}{0.23}$ kJ = 2200 kJ mol⁻¹ (1) [5]

(e) (from methane to butane there are more electrons in the molecule therefore greater/stronger van der Waals' forces (1)

(ii) straight chain molecules can pack more closely therefore stronger van der Waals' forces (1) or reverse argument [4]


[Total: 15]

2	(a	$C(s) + O_2(g) \rightarrow CO_2(g)$ the enthalpy change/energy change/heat change when one mole of a compound/ CO_2 is formed from its elements in their standard states				
	(b)	(i) $CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$ $\Delta H^{e}_{f}/kJ \text{ mol}^{-1} -39 0 -20 -24$				
		$\Delta H^{e}_{reaction} = -201 + (-242) - (-394)$ -49 kJ mol ⁻¹ correct sign	(1) (1) (1)			
		(ii) removal of CO ₂ from the atmosphere CO ₂ is a greenhouse gas/causes global warming	(1) (1)	[5]		
	(c)	In this part, in each case, the 'effect' must be correctly stated in order to gain the explanation mark.				
		higher temperature yield is reduced/equilibrium goes to LHS because forward reaction is exothermic/reverse reaction is endothermic	(1) (1)			
		higher pressure yield is increased or equilibrium goes to RHS fewer moles/molecules on RHS or more moles/molecules on LHS	(1) (1)			
		use of catalyst yield does not change forward and backward rates speeded up by same amount	(1) (1)	[6]		

[Total: 14]

- (a CO₂ is simple molecular/simple covalent/has discrete molecules (1) 3
 - CO₂ has induced dipole induced dipole interactions/ van der Waals' forces/weak intermolecular forces (1)
 - SiO₂ is giant molecular/giant covalent/macromolecular (1)
 - SiO₂ has strong covalent bonds (1)
 - (b) minimum is 4-valent Si (1) (1)and at least one Si-O-Si

i.

[2]

[any 3]

- (c) (i) for an ideal gas, any four from the following the molecules behave as rigid spheres (1)
 - there are no/negligible intermolecular forces between the molecules (1)
 - collisions between the molecules are perfectly elastic (1) the molecules have no/negligible volume (1)
 - the molecules move in random motion (1)
 - the molecules move in straight lines (1)
 - the kinetic energy of the molecules is directly proportional to the temperature (1)
 - the pressure exerted by the gas is due to the collisions between the gas molecules and the walls of the container (1)

not an ideal gas obeys pV = nRT(max 4)

- (ii) there are intermolecular forces between CO₂ molecules/ CO₂ molecules have volume (1) [5]
- (d) graphite has delocalised electrons (1) [1]
- $SiO_2 + 2C \rightarrow SiC + CO_2$ or (e) ($SiO_2 + 3C \rightarrow SiC + 2CO$ (1)
 - (ii) diamond because SiC is hard (1) [2]

[Total: 13]