Enthalpy Change & Hess's Law # **Question Paper 1** | Level | International A Level | |------------|------------------------------| | Subject | Chemistry | | Exam Board | CIE | | Topic | Chemical Energetics | | Sub-Topic | Enthalpy Change & Hess's Law | | Paper Type | Theory | | Booklet | Question Paper 1 | Time Allowed: 78 minutes Score: /65 Percentage: /100 # **Grade Boundaries:** | A* | Α | В | С | D | E | U | |------|--------|-----|-------|-------|-----|------| | >85% | 777.5% | 70% | 62.5% | 57.5% | 45% | <45% | | 1 | Ethane | reacts | with | chlorine | to | form | chloroethane. | |---|--------|--------|------|----------|----|------|---------------| |---|--------|--------|------|----------|----|------|---------------| $$C_2H_6(g) + Cl_2(g) \rightarrow C_2H_5Cl(g) + HCl(g)$$ (a) Use bond energies from the *Data Booklet* to calculate the enthalpy change for this reaction. Include a sign in your answer. | | | enthalpy change =kJ mol ⁻¹ [3] | |-----|-------|---| | | (ii) | State the conditions needed for this reaction to occur. | | | | [1] | | | (iii) | Use a series of equations to describe the mechanism of this reaction including the names of each stage and an indication of how butane can be produced as a minor by-product. | [5] | | (b) | | oroethane can be converted back into ethane by a two-stage process via an intermediate apound, X . | | | COII | ipodiid, A. | - (i) Give the name of X. -[1] - (ii) Suggest the reagent and conditions needed for reaction 1. -[2] - (iii) Suggest the reagent and conditions needed for reaction 2. -[1] - 2 (a) Silver sulfate, Ag_2SO_4 , is sparingly soluble in water. The concentration of its saturated solution is 2.5×10^{-2} mol dm⁻³ at 298 K. - (i) Write an expression for the solubility product, K_{sp} , of Ag_2SO_4 , and state its units. $$K_{sp} =$$ units: [1] (ii) Calculate the value for $K_{sp}(Ag_2SO_4)$ at 298 K. - (b) Using Ag₂SO₄ as an example, complete the following Hess' Law energy cycle relating the - lattice energy, ΔH^e_{latt}, - enthalpy change of solution, ΔH^o_{sol}, and - enthalpy change of hydration, ΔH^o_{hyd}. ### On your diagram: - include the relevant species in the two empty boxes, - label each enthalpy change with its appropriate symbol, - complete the remaining two arrows showing the correct direction of enthalpy change. [4] (c) An electrochemical cell is set up as follows. (i) Use the *Data Booklet* to calculate the value of $E_{\text{cell}}^{\text{e}}$ under standard conditions, stating which electrode is the positive one. (ii) How would the actual $E_{\rm cell}$ of the above cell compare to the $E_{\rm cell}^{\,\rm e}$ under standard conditions? Explain your answer. [1] - (iii) How would the E_{cell} of the above cell change, if at all, if a few cm³ of concentrated Na₂SO₄(aq) were added to - the beaker containing Fe³+(aq) + Fe²+(aq), the beaker containing Ag₂SO₄(aq)? [2] (iv) Explain any changes in E_{cell} you have stated in (iii). _____ (d) Solutions of iron(III) sulfate are acidic due to the following equilibrium. $[Fe(H_2O)_6]^{3+}(aq) \iff [Fe(H_2O)_5(OH)]^{2+}(aq) + H^+(aq)$ $K_a = 8.9 \times 10^{-4} \, mol \, dm^{-3}$ Calculate the pH of a $0.1 \, \text{mol dm}^{-3}$ solution of iron(III) sulfate, $\text{Fe}_2(\text{SO}_4)_3$. pH = - 3 (a) Natural phosphorus consists of one isotope, ³¹P. Chlorine exists naturally as two isotopes, ³⁵Cl and ³⁷Cl, in the relative abundance ratio of 3:1. - (i) The mass spectrum of PCl_3 contains several peaks corresponding to a number of molecular fragments. Suggest the isotopic composition of the fragments with the following mass numbers. | mass number | isotopic composition | |-------------|----------------------| | 101 | | | 103 | | | 105 | | (ii) Predict the relative ratios of the peak heights of the three peaks corresponding to these fragments. [4] **(b)** Phosphorus reacts with chlorine to form a variety of chlorides. PCl_5 is an example of a compound that exists as two structures depending on the conditions. $$2PCl_5(g) \iff [PCl_4]^+[PCl_6]^-(s)$$ (i) Draw a 'dot-and-cross' diagram to show the bonding in PCl_5 . Show the outer electrons only. | | (ii) | Draw diagrams to suggest the shapes of $[PCl_4]^+$ and $[PCl_6]^-$. | |-----|-------------|--| | | | $[PCl_4]^+$ $[PCl_6]^-$ | | | | | | (c) | | Phosphorus(III) oxide, P_4O_6 , contains no P–P or O–O bonds. In the P_4O_6 molecule, all oxygen atoms are divalent and all phosphorus atoms are trivalent Sketch a structure for P_4O_6 . | | | | | | | (ii) | P ₄ O ₆ can act as a ligand. | | | | What is meant by the term <i>ligand</i> ? | | | | | | | | [2 | | (d) | Pho
forn | esphate ions in water can be removed by adding a solution containing $Ca^{2+}(aq)$ ions, which a precipitate of calcium phosphate, $Ca_3(PO_4)_2$. | | | (i) | Write an expression for the $K_{\rm sp}$ of ${\rm Ca_3(PO_4)_2}$. | | | | \mathcal{K}_{sp} = | | | (ii) | The solubility of $\text{Ca}_3(\text{PO}_4)_2$ is $2.50 \times 10^{-6}\text{moldm}^{-3}$ at 298 K. | | | | Calculate the solubility product, $K_{\rm sp}$, of ${\rm Ca_3(PO_4)_2}$ at this temperature. Include the units. | | | | | | | | $K_{so} = \dots $ units | [4] | (e) | What is meant by the term <i>lattice energy</i> ? | |------|---| | | | | (ii) | Explain why the lattice energy of calcium phosphate is less exothermic than that o | | (11) | magnesium phosphate. | | | | | | [3] | | | [Total: 16] | 4 | (a) | (i) | What is meant by the term lattice energy? | |---|-----|------|---| | | | (ii) | Write an equation to represent the lattice energy of MgO. | | | | | [3] | | | (b) | | e apparatus shown in the diagram can be used to measure the enthalpy change of nation of magnesium oxide, $\Delta H_{\rm f}^{\rm e}({\rm MgO})$. | | | | OX | sygen gas small electric heater | | | | | (to ignite magnesium) | | | | | the measurements you would need to make using this apparatus in order to calculate (MgO). |[3] (c) Use the following data, together with appropriate data from the *Data Booklet*, to calculate a value of ΔH_f^e(MgO). lattice energy of MgO(s) = $-3791 \text{ kJ mol}^{-1}$ enthalpy change of atomisation of Mg = $+148 \text{ kJ mol}^{-1}$ electron affinity of the oxygen atom = -141 kJ mol^{-1} electron affinity of the oxygen anion, O⁻ = $+798 \text{ kJ mol}^{-1}$ (d) Write equations, including state symbols, for the reactions, if any, of the following two oxides with water. Suggest values for the pH of the resulting solutions. | oxide | equation | pH of resulting solution | |-------------------|-----------------|--------------------------| | Na ₂ O | | | | MgO | CHEMICTOVONIINI | | [3] [Total: 12] | | me chemical reactions, such as the thermal decomposition of potassium ncarbonate, $KHCO_3$, the enthalpy change of reaction cannot be measured directly. | | | | | |-------------------|---|--|--|--|--| | | In such cases, the use of Hess' Law enables the enthalpy change of reaction to be calculated from the enthalpy changes of other reactions. | | | | | | (a) Sta | te Hess' Law. | [2] | | | | | | | to determine the enthalpy change for the thermal decomposition of potassium ncarbonate, two separate experiments were carried out. | | | | | | experin | nent 1 | | | | | | tempera
When 0 | 3 of 2.00 mol dm $^{-3}$ hydrochloric acid (an excess) was placed in a conical flask and the sture recorded as 21.0 °C0200 mol of potassium carbonate, $\rm K_2CO_3$, was added to the acid and the mixture with a thermometer, the maximum temperature recorded was 26.2 °C. | | | | | | (b) (i) | Construct a balanced equation for this reaction. | | | | | | | | | | | | | (ii) | Calculate the quantity of heat produced in experiment 1 , stating your units. Use relevant data from the <i>Data Booklet</i> and assume that all solutions have the same specific heat capacity as water. | (iii) | Use your answer to (ii) to calculate the enthalpy change per mole of K ₂ CO ₃ . Give your answer in kJ mol ⁻¹ and include a sign in your answer. | | | | | | | | | | | | | (iv) | Explain why the hydrochloric acid must be in an excess. | | | | | | | | | | | | | | [4] | | | | | ## experiment 2 The experiment was repeated with 0.0200 mol of potassium hydrogen carbonate, $\rm KHCO_3$. All other conditions were the same. In the second experiment, the temperature fell from 21.0 °C to 17.3 °C. (ii) Calculate the quantity of heat absorbed in **experiment 2**. - (c) (i) Construct a balanced equation for this reaction. - (iii) Use your answer to (ii) to calculate the enthalpy change per mole of KHCO₃. Give your answer in kJ mol⁻¹ and include a sign in your answer. - [3] - (d) When KHCO₃ is heated, it decomposes into K₂CO₃, CO₂ and H₂O. $$2KHCO_3 \rightarrow K_2CO_3 + CO_2 + H_2O$$ Use Hess' Law and your answers to **(b)(iii)** and **(c)(iii)** to calculate the enthalpy change for this reaction. Give your answer in kJ mol⁻¹ and include a sign in your answer. [2] [Total: 11]