Enthalpy Change & Hess's Law

Question Paper 1

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Chemical Energetics
Sub-Topic	Enthalpy Change & Hess's Law
Paper Type	Theory
Booklet	Question Paper 1

Time Allowed: 78 minutes

Score: /65

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

1	Ethane	reacts	with	chlorine	to	form	chloroethane.
---	--------	--------	------	----------	----	------	---------------

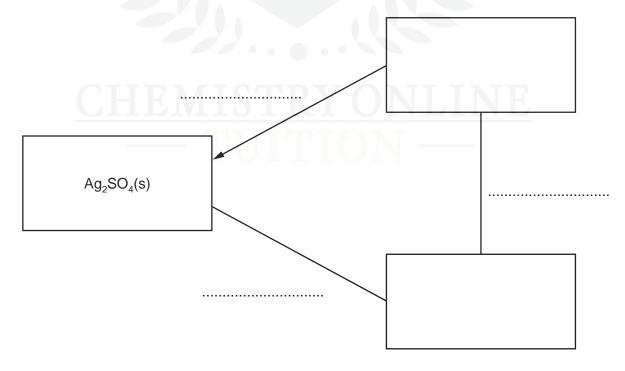
$$C_2H_6(g) + Cl_2(g) \rightarrow C_2H_5Cl(g) + HCl(g)$$

(a) Use bond energies from the *Data Booklet* to calculate the enthalpy change for this reaction. Include a sign in your answer.

		enthalpy change =kJ mol ⁻¹ [3]
	(ii)	State the conditions needed for this reaction to occur.
		[1]
	(iii)	Use a series of equations to describe the mechanism of this reaction including the names of each stage and an indication of how butane can be produced as a minor by-product.
		[5]
(b)		oroethane can be converted back into ethane by a two-stage process via an intermediate apound, X .
	COII	ipodiid, A.

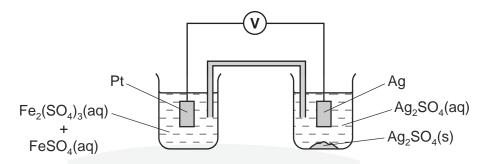
- (i) Give the name of X.
 -[1]
- (ii) Suggest the reagent and conditions needed for reaction 1.
 -[2]
- (iii) Suggest the reagent and conditions needed for reaction 2.
 -[1]

- 2 (a) Silver sulfate, Ag_2SO_4 , is sparingly soluble in water. The concentration of its saturated solution is 2.5×10^{-2} mol dm⁻³ at 298 K.
 - (i) Write an expression for the solubility product, K_{sp} , of Ag_2SO_4 , and state its units.


$$K_{sp} =$$
 units: [1]

(ii) Calculate the value for $K_{sp}(Ag_2SO_4)$ at 298 K.

- (b) Using Ag₂SO₄ as an example, complete the following Hess' Law energy cycle relating the
 - lattice energy, ΔH^e_{latt},
 - enthalpy change of solution, ΔH^o_{sol}, and
 - enthalpy change of hydration, ΔH^o_{hyd}.


On your diagram:

- include the relevant species in the two empty boxes,
- label each enthalpy change with its appropriate symbol,
- complete the remaining two arrows showing the correct direction of enthalpy change.

[4]

(c) An electrochemical cell is set up as follows.

(i) Use the *Data Booklet* to calculate the value of $E_{\text{cell}}^{\text{e}}$ under standard conditions, stating which electrode is the positive one.

(ii) How would the actual $E_{\rm cell}$ of the above cell compare to the $E_{\rm cell}^{\,\rm e}$ under standard conditions? Explain your answer.

[1]

- (iii) How would the E_{cell} of the above cell change, if at all, if a few cm³ of concentrated Na₂SO₄(aq) were added to
 - the beaker containing Fe³+(aq) + Fe²+(aq),

the beaker containing Ag₂SO₄(aq)?

[2]

(iv) Explain any changes in E_{cell} you have stated in (iii).

(d) Solutions of iron(III) sulfate are acidic due to the following equilibrium.

 $[Fe(H_2O)_6]^{3+}(aq) \iff [Fe(H_2O)_5(OH)]^{2+}(aq) + H^+(aq)$ $K_a = 8.9 \times 10^{-4} \, mol \, dm^{-3}$

Calculate the pH of a $0.1 \, \text{mol dm}^{-3}$ solution of iron(III) sulfate, $\text{Fe}_2(\text{SO}_4)_3$.

pH =

- 3 (a) Natural phosphorus consists of one isotope, ³¹P. Chlorine exists naturally as two isotopes, ³⁵Cl and ³⁷Cl, in the relative abundance ratio of 3:1.
 - (i) The mass spectrum of PCl_3 contains several peaks corresponding to a number of molecular fragments.

Suggest the isotopic composition of the fragments with the following mass numbers.

mass number	isotopic composition
101	
103	
105	

(ii) Predict the relative ratios of the peak heights of the three peaks corresponding to these fragments.

[4]

(b) Phosphorus reacts with chlorine to form a variety of chlorides. PCl_5 is an example of a compound that exists as two structures depending on the conditions.

$$2PCl_5(g) \iff [PCl_4]^+[PCl_6]^-(s)$$

(i) Draw a 'dot-and-cross' diagram to show the bonding in PCl_5 . Show the outer electrons only.

	(ii)	Draw diagrams to suggest the shapes of $[PCl_4]^+$ and $[PCl_6]^-$.
		$[PCl_4]^+$ $[PCl_6]^-$
(c)		Phosphorus(III) oxide, P_4O_6 , contains no P–P or O–O bonds. In the P_4O_6 molecule, all oxygen atoms are divalent and all phosphorus atoms are trivalent Sketch a structure for P_4O_6 .
	(ii)	P ₄ O ₆ can act as a ligand.
		What is meant by the term <i>ligand</i> ?
		[2
(d)	Pho forn	esphate ions in water can be removed by adding a solution containing $Ca^{2+}(aq)$ ions, which a precipitate of calcium phosphate, $Ca_3(PO_4)_2$.
	(i)	Write an expression for the $K_{\rm sp}$ of ${\rm Ca_3(PO_4)_2}$.
		\mathcal{K}_{sp} =
	(ii)	The solubility of $\text{Ca}_3(\text{PO}_4)_2$ is $2.50 \times 10^{-6}\text{moldm}^{-3}$ at 298 K.
		Calculate the solubility product, $K_{\rm sp}$, of ${\rm Ca_3(PO_4)_2}$ at this temperature. Include the units.
		$K_{so} = \dots $ units

[4]

(e)	What is meant by the term <i>lattice energy</i> ?
(ii)	Explain why the lattice energy of calcium phosphate is less exothermic than that o
(11)	magnesium phosphate.
	[3]
	[Total: 16]

4	(a)	(i)	What is meant by the term lattice energy?
		(ii)	Write an equation to represent the lattice energy of MgO.
			[3]
	(b)		e apparatus shown in the diagram can be used to measure the enthalpy change of nation of magnesium oxide, $\Delta H_{\rm f}^{\rm e}({\rm MgO})$.
		OX	sygen gas small electric heater
			(to ignite magnesium)
			the measurements you would need to make using this apparatus in order to calculate (MgO).

.....[3]

(c) Use the following data, together with appropriate data from the *Data Booklet*, to calculate a value of ΔH_f^e(MgO).

lattice energy of MgO(s) = $-3791 \text{ kJ mol}^{-1}$ enthalpy change of atomisation of Mg = $+148 \text{ kJ mol}^{-1}$ electron affinity of the oxygen atom = -141 kJ mol^{-1} electron affinity of the oxygen anion, O⁻ = $+798 \text{ kJ mol}^{-1}$

(d) Write equations, including state symbols, for the reactions, if any, of the following two oxides with water. Suggest values for the pH of the resulting solutions.

oxide	equation	pH of resulting solution
Na ₂ O		
MgO	CHEMICTOVONIINI	

[3]

[Total: 12]

	me chemical reactions, such as the thermal decomposition of potassium ncarbonate, $KHCO_3$, the enthalpy change of reaction cannot be measured directly.				
	In such cases, the use of Hess' Law enables the enthalpy change of reaction to be calculated from the enthalpy changes of other reactions.				
(a) Sta	te Hess' Law.				
	[2]				
	to determine the enthalpy change for the thermal decomposition of potassium ncarbonate, two separate experiments were carried out.				
experin	nent 1				
tempera When 0	3 of 2.00 mol dm $^{-3}$ hydrochloric acid (an excess) was placed in a conical flask and the sture recorded as 21.0 °C0200 mol of potassium carbonate, $\rm K_2CO_3$, was added to the acid and the mixture with a thermometer, the maximum temperature recorded was 26.2 °C.				
(b) (i)	Construct a balanced equation for this reaction.				
(ii)	Calculate the quantity of heat produced in experiment 1 , stating your units. Use relevant data from the <i>Data Booklet</i> and assume that all solutions have the same specific heat capacity as water.				
(iii)	Use your answer to (ii) to calculate the enthalpy change per mole of K ₂ CO ₃ . Give your answer in kJ mol ⁻¹ and include a sign in your answer.				
(iv)	Explain why the hydrochloric acid must be in an excess.				
	[4]				

experiment 2

The experiment was repeated with 0.0200 mol of potassium hydrogen carbonate, $\rm KHCO_3$. All other conditions were the same.

In the second experiment, the temperature fell from 21.0 °C to 17.3 °C.

(ii) Calculate the quantity of heat absorbed in **experiment 2**.

- (c) (i) Construct a balanced equation for this reaction.

 - (iii) Use your answer to (ii) to calculate the enthalpy change per mole of KHCO₃. Give your answer in kJ mol⁻¹ and include a sign in your answer.
 - [3]
- (d) When KHCO₃ is heated, it decomposes into K₂CO₃, CO₂ and H₂O.

$$2KHCO_3 \rightarrow K_2CO_3 + CO_2 + H_2O$$

Use Hess' Law and your answers to **(b)(iii)** and **(c)(iii)** to calculate the enthalpy change for this reaction.

Give your answer in kJ mol⁻¹ and include a sign in your answer.

[2]

[Total: 11]