Enthalpy Change & Hess's Law

Question Paper 2

Level	International A Level				
Subject	Chemistry				
Exam Board	CIE				
Topic	Chemical Energetics				
Sub-Topic	Enthalpy Change & Hess's Law				
Paper Type	Theory				
Booklet	Question Paper 2				

Time Allowed: 68 minutes

Score: /56

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

1(a) The reaction between iodide ions and persulfate ions, $S_2O_8^{2-}$, is slow.

$$2I^{-} + S_2O_8^{2-} \longrightarrow I_2 + 2SO_4^{2-}$$

The reaction can be speeded up by adding a small amount of Fe^{2+} or Fe^{3+} ions. The following two reactions then take place.

$$2I^- + 2Fe^{3+} \longrightarrow I_2 + 2Fe^{2+}$$

$$2Fe^{2+} + S_2O_8^{2-} \longrightarrow 2Fe^{3+} + 2SO_4^{2-}$$
 3

(i) What type of catalysis is occurring here?

(ii) The rates of reactions 2 and 3 are both faster than that of reaction 1. By considering the species involved in these reactions, suggest a reason for this.

(iii) The following reaction pathway diagram shows the enthalpy profile of reaction 1.

Use the same axes to draw the enthalpy profiles of reaction 2 followed by reaction

3, starting reaction 2 at the same enthalpy level as reaction 1.

[4]

(b)	The nitro	oxidation of SO_2 to SO_3 in the atmosphere is speeded up by the presence of ogen oxides.
	(i)	Describe the environmental significance of this reaction.
	(ii)	Describe a major source of SO_2 in the atmosphere.
	(iii)	By means of suitable equations, show how nitrogen oxides speed up this reaction.
		[4]
		[Total: 8]

2	(a)	What is meant by the term bond energy?
		[2]
	(b)	Describe and explain what is observed when a red-hot wire is plunged into separate samples of the gaseous hydrogen halides HCl and HI. How are bond energy values useful in interpreting these observations?
		[3]
	(c)	The following reaction occurs in the gas phase.
		$3F_2(g) + Cl_2(g) \longrightarrow 2ClF_3(g), \qquad \Delta H_r^{\Theta} = -328 \text{ kJ mol}^{-1}$
		Use these and other data from the <i>Data Booklet</i> to calculate the average bond energy of the Cl - F bond in Cl F $_3$.
		[Total: 7]

(a)	Dra	w a diagram of a molecule of $\mathrm{SiC}l_4$ stating bond angles.	
			[2]
(b)	Des	scribe and explain how the volatilities of the Group IV chlorides vary down the gro	up.
(c)	The	e relative stabilities of the M^{2+} (aq) and M^{4+} (aq) ions also vary down Group IV.	
	(i)	Use the <i>Data Booklet</i> to illustrate this observation when $M = \text{Sn}$ and $M = \text{Pb}$.	
	(ii)	Use the Data Booklet to predict the products formed, and write equations for reactions occurring, when	the
		 an equimolar mixture of Sn²⁺(aq) and Sn⁴⁺(aq) is added to I₂(aq), 	
		 an equimolar mixture of Pb²⁺(aq) and Pb⁴⁺(aq) is added to SO₂(aq). 	
			 [4]

The elements of Group IV all form tetrachlorides with the general formula $M{\rm C}\,l_4$.

3

(d) (i)	The Sn–C l bond energy is +315 kJ mol ⁻¹ . Use this and other values from the <i>Booklet</i> to calculate $\Delta H^{\rm e}$ for the reaction) Data
	$MCl_2(g) + Cl_2(g) \rightarrow MCl_4(g)$	
	for the following cases.	
	• $M = Si$	
	ΔH^{Θ} =kJ	mol ^{–1}
	• <i>M</i> = Sn	
	ΔH° =kJ	mol ⁻¹
(ii)	Do your results agree with the trend in relative stabilities of the +2 and +4 oxi states in (c) ? Explain your answer.	dation
		[3]
	[Tot	al: 11]

4 Lead(II) chloride, PbC l_2 , can be used in the manufacture of some types of coloured glass.

 ${\rm PbC}$ l_2 is only sparingly soluble in water. The $[{\rm Pb}^{2+}]$ in a saturated solution of ${\rm PbC}$ l_2 can be estimated by measuring the cell potential, $E_{\rm cell}$, of the following cell.

(a) In the spaces below, identify what the four letters A-D in the above diagram represent.

A	В
C	 D

- **(b)** In a saturated solution of PbC l_2 , [PbC l_2 (aq)] = 3.5×10^{-2} mol dm⁻³.
 - (i) The E° for the Pb²⁺/Pb electrode is -0.13 V. Predict the potential of the right-hand electrode in the diagram above. Indicate this by placing a tick in the appropriate box in the table below.

electrode potential/V	place one tick only in this column
-0.17	KY ONL
-0.13	TION
-0.09	IIUN
0.00	

Explain your answer.		

[4]

(ii	Write an expression for the solubility product, K_{sp} , of PbC l_2 .			
(iii) Calculate the value of $K_{\!\scriptscriptstyle \mathrm{sp}}$, including units.			
	V			
	$\mathcal{K}_{sp} = \dots$ units[5]			
	he behaviours of ${\sf PbC}l_2$ and ${\sf SnC}l_2$ towards reducing agents are similar, but their behaviours wards oxidising agents are very different.			
(i	and their ions. Explain what the relative E° values mean in terms of the ease of oxidation or reduction of these compounds.			
(ii	Writing a balanced molecular or ionic equation in each case, suggest a reagent to carry out each of the following reactions.			
	the reduction of $PbCl_2$			
	the oxidation of ${\rm SnC}\it{l}_{\it{2}}$			
	[5]			

(d)	Write an equation to represent the lattice energy of $PbCl_2$. Show state symbols.
(ii)	Use the following data, together with appropriate data from the $\it Data\ Booklet$, to calculate a value for the lattice energy of ${\rm PbC}\it{l}_{\it{2}}$.
	electron affinity of chlorine = $-349 \mathrm{kJ}\mathrm{mol}^{-1}$ enthalpy change of atomisation of lead = $+195 \mathrm{kJ}\mathrm{mol}^{-1}$ enthalpy change of formation of PbC $l_2(s)$ = $-359 \mathrm{kJ}\mathrm{mol}^{-1}$
	lattice energy =kJ mol
(iii)	How might the lattice energy of $PbCl_2$ compare to that of $PbBr_2$? Explain your answer.
	CHEMISTRYONLINE
	[6

[Total: 20]

5	Nitr	oger	oxides in the atmosphere are homogeneous catalysts in the formation of acid rain	۱.		
	(a)	What is meant by the following terms?				
		cata	alyst			
		hon	nogeneous			
			[2			
	(b)	(i)	State a major source of nitrogen oxides in the atmosphere, explaining how they ar			
	(6)	(-)	formed.	•		
		(ii)	Use equations to describe the chemical role played by nitrogen oxides in the formation of acid rain.	ı		
			HEMISTRYONLINE			
			— TIIITION —	5		

(c) Use the following axes to draw a fully labelled reaction pathway diagram showing the effect of a catalyst on an exothermic reaction. Label the ΔH and $E_{\rm a}$ values.

