Born-Haber Cycles ## **Question Paper 6** | Level | International A Level | |------------|-----------------------| | Subject | Chemistry | | Exam Board | CIE | | Topic | Chemical Energetics | | Sub-Topic | Born-Haber Cycles | | Paper Type | Theory | | Booklet | Question Paper 6 | Time Allowed: 77 minutes Score: /64 Percentage: /100 ## **Grade Boundaries:** | A* | А | В | С | D | E | U | |------|--------|-----|-------|-------|-----|------| | >85% | 777.5% | 70% | 62.5% | 57.5% | 45% | <45% | | (a) The | e halogens chlorine and bromine react readily with hydrogen. | |----------------|--| | | $X_2(g) + H_2(g) \rightarrow 2HX(g)$ [X = Cl or Br] | | (i) | Describe how you could carry out this reaction using chlorine. | | | | | (ii) | Describe two observations you would make if this reaction was carried out with bromine. | | | | | | | | (iii) | Use bond energy data from the ${\it Data Booklet}$ to calculate the ${\it \Delta H^{e}}$ for this reaction when | | | X = Cl, | | | $\Delta H^{\Theta} = \dots kJ \text{mol}^{-1}$ $X = Br$. | | (iv) | $\Delta H^{\Theta} = \text{ kJ mol}^{-1}$ What is the major reason for the difference in these two ΔH^{Θ} values? | | | [8] | 1 | (b) | Son | me halogens also react readily with methane. | | | | | | |-----|-------------|--|--|--|--|--|--| | | | $CH_4(g) + X_2(g) \rightarrow CH_3X(g) + HX(g)$ | | | | | | | | (i) | What conditions are needed to carry out this reaction when X is bromine, Br? | | | | | | | | (ii) | Use bond energy data from the <i>Data Booklet</i> to calculate the ΔH^{Φ} of this reaction for the situation where X is iodine, I. | | | | | | | | | $\Delta H^{\Theta} = \dots kJ \text{mol}^{-1}$ | | | | | | | (| (iii) | Hence suggest why it is not possible to make iodomethane, CH ₃ I, by this reaction. | | | | | | | | | [4] | | | | | | | (c) | Hale | ogenoalkanes can undergo homolytic fission in the upper atmosphere. | | | | | | | | (i) | Explain the term homolytic fission. | (ii) | Suggest the most likely organic radical that would be formed by the homolytic fission of bromochloromethane, CH ₂ BrC <i>l.</i> Explain your answer. | | | | | | | | | | | | | | | | | | THE MISTRY ONLINE | | | | | | | | | [3] | | | | | | | (d) | four
Dra | reaction between propane and chlorine produces a mixture of many compounds, of which are structural isomers with the molecular formula $\rm C_3H_6C\it l_2$. w the structural or skeletal formulae of these isomers, and indicate any chiral atoms an asterisk (*). | | | | | | | Crude oil is a naturally occurring flammable liquid which consists of a complex hydrocarbons. In order to separate the hydrocarbons the crude oil is subjected to distillation. | | | | | | |---|---|--|--|--|--| | (a) | Explain what is meant by the following terms. | | | | | | | (i) | hydrocarbon | | | | | | | | | | | | | (ii) | fractional distillation | | | | | | | | | [2 | | | (b) | Suc | | ong chain hydrocarbon which
irbons are 'cracked' to produc | n is present in crude oil.
e alkanes and alkenes which have | | | | (i) | Give the conditions may be cracked. | for two different processe | s by which long chain molecules | | | | | process 1 | (ii) | Undecane, C ₁₁ H ₂₄ ,
Construct a balance | can be cracked to form penta
ed equation for this reaction. | ane, C ₅ H ₁₂ , and an alkene. | | | _ | | | | [3 | | | (c) | (i) | , C_5H_{12} , exhibits stru
Draw the three struc | ctural isomerism. | | | | | | | TIITION | isomer B | isomer C | isomer D | | | | (ii) | The three isomers of pentane have different boiling points. | |-----|--------|---| | | | Which of your isomers has the highest boiling point? | | | | isomer | | | | Suggest an explanation for your answer. | | | | | | | | | | | | [6] | | | | caturated hydrocarbon, ${f E}_{\rm s}$ is obtained by cracking hexane and is important in the l industry. | | The | e star | ndard enthalpy change of combustion of E is $-2059 \text{kJ} \text{mol}^{-1}$. | | (d) | Def | ine the term standard enthalpy change of combustion. | | | | | | | | [2] | | | | .47 g of E was completely burnt in air, the heat produced raised the temperature of water by 27.5 °C. Assume no heat losses occurred during this experiment. | | (e) | (i) | Use relevant data from the <i>Data Booklet</i> to calculate the amount of heat released in this experiment. | | | | | | | | | | | (ii) | Use the data above and your answer to (i) to calculate the relative molecular mass, $M_{\rm r}$, of E. | | | | | | | | | | | | [4] | | (f) | Dec | duce the molecular formula of E. | | | | [1] | | | | [Total: 18] | | 3 | (a) | (i) | Write equations to illustrate the reactions of the following oxides with water. | |---|-----|----------------------|--| | | | | phosphorus(V) oxide | | | | | sulfur(IV) oxide | | | | (ii) | When NO_2 reacts with water, nitrogen undergoes a disproportionation reaction in which one nitrogen atom decreases its oxidation number by 1 and another nitrogen atom increases its oxidation number by 1. A mixture of two acids results. Suggest an equation for the reaction between NO_2 and water. | | | | | | | | | (iii) | In a similar disproportionation reaction, $\mathrm{C}l\mathrm{O}_2$ reacts with aqueous NaOH to produce a solution containing two chlorine-containing sodium salts. Suggest an equation for the reaction between $\mathrm{C}l\mathrm{O}_2$ and aqueous NaOH. | | | | | [4] | | | (b) | is the of very sulfi | major source of sulfur for the manufacture of sulfuric acid by the Contact process are de-sulfurisation of 'sour' natural gas. Many natural gas wells produce a mixture rolatile hydrocarbons (mainly CH_4 and C_2H_6) together with up to 25% hydrogen de, H_2S . Complete and balance the following equation showing the complete combustion of a gaseous mixture consisting of 2 mol of CH_4 , 1 mol of C_2H_6 and 1 mol of H_2S . $2CH_4 + C_2H_6 + H_2S + \rightarrow SO_2 + +$ Explain why it is important to remove the H_2S before burning the natural gas industrially. | | | | | | | | | | JEBMISIKY ONLINE | | | | | $\rm H_2S$ is removed by passing the 'sour' natural gas through a solvent containing anolamine. The following reaction takes place. | | | | | $HOCH_2CH_2NH_2 \; + \; H_2S(g) \; \longrightarrow \; HOCH_2CH_2NH_3^+ \; + \; SH^-$ | | | | (iii) | If a sample of natural gas contains 5% by volume of $\rm H_2S$, calculate the mass of ethanolamine required to remove all the $\rm H_2S$ from a 1000 dm³ sample of gas, measured under room conditions. | | | | | | | | | | | | | | | | The $\rm H_2S$ can be recovered by warming the solution to 120 °C, when the above reaction is reversed. The ethanolamine can then be recycled. (iv) What type of reaction is occurring here? The recovered H₂S is converted to sulfur by the following two reactions. I Part of the H₂S is burned in air. $$H_2S + 1.5O_2 \rightarrow SO_2 + H_2O$$ II The gas stream resulting from reaction I is then blended with the remaining H₂S and fed into an iron oxide catalyst bed, where sulfur and water are produced according to the following equation. $$2H_2S(g) + SO_2(g) \rightarrow 3S(g) + 2H_2O(g)$$ (v) Use the following data to calculate ΔH^{Φ} for the reaction between H_2S and SO_2 . | compound | $\Delta H_{\rm f}^{\bullet}$ / kJ mol ⁻¹ | |---------------------|---| | H ₂ S(g) | -21 | | SO ₂ (g) | -297 | | H ₂ O(g) | -242 | | S(g) | +11 | ## CHEMISTRY ONLINE TITION $$\Delta H^{\Phi} = \dots kJ \, \text{mol}^{-1}$$ [8] [Total: 12] **4** Alkanes such as methane, CH₄, undergo few chemical reactions. Methane will, however, react with chlorine but not with iodine. Relevant standard enthalpy changes of formation for the reaction of methane with chlorine to form chloromethane, CH_3Cl , are given below. | | $\Delta H_{\rm f}^{\rm o}/{\rm kJ~mol^{-1}}$ | |----------------------------|--| | CH ₄ | - 75 | | CH ₃ C <i>l</i> | -82 | | HC1 | -92 | (a) (i) Use the data to calculate $\Delta H_{\text{reaction}}^{\Phi}$ for the formation of CH₃Cl. $$CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$$ (ii) The corresponding reaction with iodine does not take place. Use bond energy data from the *Data Booklet* to calculate a 'theoretical value' for $\Delta H_{\rm reaction}$ for the following equation. $$CH_4 + I_2 \rightarrow CH_3I + HI$$ CHEMISTRY ONLINE (iii) Suggest why this reaction does **not** in fact occur. [5] | b) (i) By using equations, describe the mechanism of the reaction between chlorine and methane to form chloromethane, CH ₃ Cl. | nd | |---|-----| | Identify, by name, the separate steps of the overall reaction. | (ii) What is the intermediate organic species in this reaction? | | | | [7] | | The energy of activation for the formation of CH ₃ Cl is 16 kJ mol ⁻¹ . Use this figure and your answer to (a)(i) to complete the reaction pathway diagral below showing the formation of CH ₃ Cl from CH ₄ and Cl ₂ . Show clearly the intermediate organic species and the final products. Indicate on your sketch the relevant enthalpy changes and their values. | Με | [4] [Total: 16]