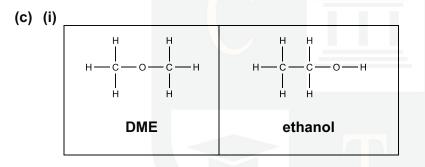
Born-Haber Cycles Mark Scheme 1

Level		Internation	al A Level			
Subject		Chemistry				
Exam Board		CIE				
Торіс		Chemical Er	ergetics			
Sub-Topic		Born-Haber	Cycles			
Paper Type		Theory				
Booklet		Mark Scher	ne 1			
Time Allowed: Score: Percentage:	63 minute /52 /100	es TRY				
Grade Boundaries: TUITION —						
A* A	В	С	D	E	U	
>85% 777.5%	70%	62.5%	57.5%	45%	<45%	

1	(a)	$K_{\rm P} = \frac{p(\rm NO)^4 p(\rm H_2O)^6}{p(\rm NH_3)^4 p(\rm O_2)^5}$	(1)
		atmospheres or Pa or kPa allow ecf on incorrect powers	(1) [2]
	(b)	 (increasing temperature yield of NO is decreased or reaction moves to LHS forward reaction is exothermic (ii) decreasing the pressure yield of NO is increased or reaction moves to RHS more moles/molecules of gas on RHS or fewer moles/molecules of gas on LHS 	(1) (1) (1) (1)
	(c)	let ΔH_f^{e} for NO be y kJ mol ⁻¹	
		$4NH_3(g) + 5O_2(g) \implies 4NO(g) + 6H_2O(g)$	
		$\Delta H_{\rm f}^{\rm e} 4 \times (-46.0)$ 4y $6 \times (-242)$	(1)
		$\Delta H^{\circ}_{\text{reaction}} = 4y + [6 \times (-242)] - [4 \times (-46.0)]$ = 4y - 1452 + 184	(1)
		$\Delta H^{e}_{reaction}$ is –906 kJmol ⁻¹ so 4y = -906 + 1452 – 184 = 362 whence y = ΔH^{e}_{f} for NO = +90.5 kJ mol ⁻¹	(1)
		+ sign is require	(1)
		Γ	Total: 10]


asherrana@chemistryonlinetuition.com

2	(a	$C(s) + O_2(g) \rightarrow CO_2(g)$ the enthalpy change/energy change/heat change when one mole of a compound/CO ₂ is formed from its elements in their standard states	(1) (1) (1)	[3]
	(b)	(i) $\Delta H^{\theta}_{f}/kJ \text{ mol}^{-1} \qquad \begin{array}{c} CO_{2}(g) + 3H_{2}(g) \rightleftharpoons CH_{3}OH(g) + H_{2}O(g) \\ -39 & 0 & -20 \end{array}$ $\Delta H^{\theta}_{reaction} = -201 + (-242) - (-394) \\ -49 \text{ kJ mol}^{-1} \\ \text{correct sign} \end{array}$	(1) (1) (1)	
	(c)	 (ii) removal of CO₂ from the atmosphere CO₂ is a greenhouse gas/causes global warming In this part, in each case, the 'effect' must be correctly stated 	(1) (1)	[5]
	(-)	(1) (1)		
		higher pressure yield is increased or equilibrium goes to RHS fewer moles/molecules on RHS or more moles/molecules on LHS	(1) (1)	
		use of catalyst yield does not change forward and backward rates speeded up by same amount	(1) (1)	[6]
			[Total:	14]

asherrana@chemistryonlinetuition.com

3	(a)	$CH_3OCH_3(I) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I)$ the enthalpy change/heat change/heat evolved when		
		one mole of CH ₃ OCH ₃ /a compound	(1)	
		is completely burned or burned in an excess of air/oxygen	(1)	[3]

(b)
$$\begin{array}{ccc} \Delta H^{0}{}_{\rm f}/kJ\,{\rm mol}^{-1} & 2{\rm CH}_{3}{\rm OH}({\rm I}) \rightarrow {\rm CH}_{3}{\rm OCH}_{3}({\rm g}) & + {\rm H}_{2}{\rm O}({\rm I}) \\ \Delta H^{0}{}_{\rm reaction} & = & -184 + (-286) - 2(-239) \\ & = & -184 + (-286) - 2(-239) \\ & + 8\,{\rm kJ}\,{\rm mol}^{-1} \\ & {\rm correct sign} \end{array}$$
(1) (1)

both correct
 (1)

 (ii)
 structural isomerism or functional group isomerism
 (1)

 (d)
 (i)
 hydrogen bonds
 (1)

 (ii)
 hydrogen bonds
 (1)

 (iii)
 lone pair on O atom of
$$C_2H_5OH$$
 (1)

 correct dipole $O^{\delta-}$ — $H^{\delta+}$ on bond in one molecule of ethanol
 (1)

hydrogen bond shown between lone pair of an O atom and a hydrogen atom, i.

$$C_{2H_{5}}$$

 $O \bullet O C_{2H_{5}}$
 $H = O - C_{2H_{5}}$
(1) [4]
[Total: 12]

•

4	(а	(i)	enthalpy/energy change/released when <u>1 mol</u> of <u>ions</u> … in the <u>gas phase</u> (are dissolved in) <u>water</u>	[1 [1]
		(ii)	$Mg^{2+}(g) + aq (or H_2O) \rightarrow Mg^{2+}(aq) or [Mg(H_2O)_6]^{2+}$	[1]
	((iii)	Mg ²⁺ has a smaller radius/size or greater charge density than Ca ²⁺ (ions required)	[1]
	(iv)	O^{2-} reacts with water to give OH^- or equation: $O^{2-} + H_2O \rightarrow 2OH^-$	[1] [5]

- (b) (apparatus: "insulated" calorimeter, water and thermometer)
 - measure (known volume/mass of) water *or* stated volume of water (into calorimeter)
 - take the temperature (of the water NOT the MgCl₂)
 - weigh out known mass of MgCl₂ or stated mass of MgCl₂
 - take final/highest/constant temperature *or* record temperature change/rise 4 × [1]
 [4]

(c) (i)	$\Delta H_{sol}^{e} = 641$	– 801 = –160 kJ mol ^{–1}		[1]
(ii)	$\Delta H^{e}_{hyd} = (189)$	90 – 2526 – 160)/2 = –3	98 kJ mol ⁻¹	[2] [3]

(d)

- solubility: MgSO₄ > BaSO₄ or decreases down the group
- because ΔH_{sol} is more endothermic for BaSO₄ or more exothermic for MgSO₄
- due to larger r_{ion} or smaller charge density of Ba²⁺ (ion has to be mentioned)
- leading to smaller LE and HE or LE and HE decrease
- but difference in HE (between Mg²⁺ and Ba²⁺) is larger than the difference in LE (between MgSO₄ and BaSO₄)
 or HE is dominant or HE decreases more than LE
 any 4 points [4]

[4] <u>CHEMISTRYONLINE</u> ______[Total: 16]