Born-Haber Cycles

Mark Scheme 2

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Chemical Energetics
Sub-Topic	Born-Haber Cycles
Paper Type	Theory
Booklet	Mark Scheme 2

Time Allowed:	$\mathbf{6 0}$ minutes
Score:	$/ \mathbf{5 0}$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	777.5%	70%	62.5%	57.5%	45%	$<45 \%$

1 (a (i) heterogeneous: different states AND homogeneous: same state
(ii) the correct allocation of the terms heterogeneous and homogeneous to common catalysts
example of heterogeneous, e.g. Fe (in the Haber process) linked to correct system
equation, e.g. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$
how catalyst works, adsorption (onto the surface)
example of homogeneous, e.g. Fe^{3+} or Fe^{2+} (in $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+\mathrm{I}^{-}$) linked to correct system equation, e.g. $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{I}^{-} \longrightarrow 2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2}$
how catalyst works, e.g. $\mathrm{Fe}^{3+}+\mathrm{I}^{-} \longrightarrow \mathrm{Fe}^{2+}+1 / 2 \mathrm{I}_{2}$
(b)

> both E_{a} shown, with $E_{a}(1)>E_{a}(2)$
> both ΔH shown, with $\Delta H(1)>\Delta H(2)$
[1]

2 (a $\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{2}$
(b) (i) step 1 electrophilic
addition
step 2 elimination or dehydrohalogenation
(ii) reagent $\mathrm{NaOH} / \mathrm{KOH} / \mathrm{OH}^{-}$
conditions in alcohol/ethanol
only allow conditions mark if reagent is correct
(c) $\quad \mathbf{Q}$ is $\mathrm{CH}_{3} \mathrm{CHO}$ (as minimum)
\mathbf{R} is $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ (as minimum)
(ii) step 3 is addition
step 4 is oxidation/redox
(d) (i) combustion
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 / \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ or
equation must be for the combustion of one mole of $\mathrm{C}_{2} \mathrm{H}_{2}$ $\mathrm{H}_{2} \mathrm{O}$ must be shown as liquid
correct state symbols in this equation
formation
$2 \mathrm{C}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$
no mark for state symbols here
(ii) let \mathbf{Z} be ΔH_{f}^{ρ} of $\mathrm{C}_{2} \mathrm{H}_{2}$

$$
\begin{align*}
& \quad \mathrm{C}_{2} \mathrm{H}_{2}+5 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \Delta H_{\mathrm{f}}^{\rho} \quad \mathrm{Z} \quad 0 \quad 2(-394)-286 \\
& \Delta H_{\mathrm{c}}=-1300=2(-394)+(-286)-\mathbf{Z} \tag{1}\\
& \text { whence } \mathbf{Z}=2(-394)+(-286)-(-1300) \\
& =+226 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \text { value } \tag{1}\\
& \text { sign } \\
& \text { allow ecf on wrong equation }
\end{align*}
$$

(a) $\mathrm{N} \equiv \mathrm{N}$ triple bond is (very) strong or the N_{2} molecule has no polarity
(b) $3 \mathrm{Mg}(\mathrm{s}) \rightarrow 3 \mathrm{Mg}^{2+}(\mathrm{g}) \quad \Delta \mathrm{H}_{1}=3 \times 148+3 \times 2186=7002$
$\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}^{3-}(\mathrm{g}) \quad \Delta \mathrm{H}_{2}=994+2 \times 2148=5290$
$\mathrm{LE}=-\Delta \mathrm{H}_{1}-\Delta \mathrm{H}_{2}-461=-12,753\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(-[1] for each error)
(c) (i) $\mathrm{Li}_{3} \mathrm{~N}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+3 \mathrm{LiOH}$ (balanced equation)
(ii) advantage: no high pressure/temperature/catalyst needed/standard conditions used
disadvantage: Li is expensive
or Li would need to be recycled/removed
or LiOH by-product is corrosive/strongly basic
or this would be a batch, rather than continuous process
(d) (i) $\mathrm{Li}_{3} \mathrm{~N}: 100 \times 14 / 35=40 \% \mathrm{~N}$
urea: $100 \times 28 / 60=47 \% N$
(ii) amide
(iii) $\mathrm{NH}_{2} \mathrm{CONH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NH}_{3}+\mathrm{CO}_{2}$
or $\rightarrow \mathrm{NH}_{2} \mathrm{CO}_{2} \mathrm{H}+\mathrm{NH}_{3}$
or $\mathrm{NH}_{2} \mathrm{CONH}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{CO}_{3}$
(iv) The LiOH would be strongly alkaline
or would increase the pH of the soil
or would 'burn' the crops/reduce plant growth/stunt plants
or would contaminate the environment

4 (a enthalpy change when 1 mol of a compound is formed (1) from its elements (1)
in their standard states under standard conditions (1)
(b)

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \Delta H_{\mathrm{f}}^{\circ} / \mathrm{kJ} \mathrm{~mol}^{-1}+50.6 \quad-241.8 \\
& \Delta H^{\circ} \text { reaction }=2(-241.8)-(+50.6)(1) \\
& =-534.2 \mathrm{~kJ} \mathrm{~mol}^{-1}(1)
\end{aligned}
$$

(ii) E_{a} is too high (1)
(iii) products are $\mathrm{H}_{2} \mathrm{O}$ and N_{2} which are harmless/non toxic or are already present in the atmosphere (1)
(c) ('dot-and-cross' diagram (1)

H
(ii)

(iii) minimum is

allow bond angle around N atom between 109° and 104° (1)
(d) -2 (1)

