Born-Haber Cycles Mark Scheme 2

Level		Internation	nal A Level		
Subject		Chemistry			
Exam Board		CIE			
Торіс		Chemical E	nergetics		
Sub-Topic		Born-Habe	r Cycles		
Paper Type		Theory			
Booklet		Mark Sche	me 2		
Time Allowed: Score: Percentage:	60 minu /50 /100	tes TRY			
Grade Boundaries:					
A* A	В	С	D	E	U
>85% 777.5%	=00/				

1	(a	(i)	heterogeneous: different states AND homogeneous: same state		
		(ii)	the correct allocation of the terms <i>heterogeneous</i> and <i>homogeneous</i> to common catalysts	[1]	
			example of heterogeneous, e.g. Fe (in the Haber process) linked to correct system equation, e.g. $N_2 + 3H_2 \longrightarrow 2NH_3$		
			how catalyst works, adsorption (onto the surface) ecf for non-iron catalyst	[1]	
			<i>example of homogeneous, e.g.</i> Fe^{3+} or Fe^{2+} (in $S_2O_3^{2-} + I^-$) linked to correct system	[1]	

equation, e.g. $S_2O_8^{2-} + 2I^- \longrightarrow 2SO_4^{2-} + I_2$	[1]
--	-----

how catalyst works, e.g. $Fe^{3+} + I^- \longrightarrow Fe^{2+} + \frac{1}{2}I_2$	[1]
ecf for non-iron catalyst	

$$extent of reaction$$

$$both E_a shown, with E_a(1) > E_a(2)$$

$$both AH shown, with E_a(1) > E_a(2)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1$$

[Total: 10]

[8]

(b)

(a Ca	$aC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$	(1)	[1]
(b) (i)	 step 1 electrophilic addition step 2 elimination or dehydrohalogenation 	(1) (1) (1)	
(ii)	reagent NaOH/KOH/OH ⁻ conditions in alcohol/ethanol only allow conditions mark if reagent is correct	(1) (1)	[5]
(c)	Q is CH ₃ CHO (as minimum) R is CH ₃ CO ₂ H (as minimum)	(1) (1)	
(ii)	step 3 is addition step 4 is oxidation/redox	(1) (1)	[4]
(d) (i)	combustion $C_2H_2(g) + {}^{5}I_2O_2(g) \rightarrow 2CO_2(g) + H_2O(I)$ or equation must be for the combustion of one mole of C_2H_2 H_2O must be shown as liquid correct state symbols in this equation formation $2C(s) + H_2(g) \rightarrow C_2H_2(g)$ no mark for state symbols here	(1) (1) (1)	
(ii)	let Z be ΔH^{e}_{f} of $C_{2}H_{2}$ $C_{2}H_{2} + \frac{5}{2}O_{2} \rightarrow 2CO_{2} + H_{2}O$		
	$\Delta H_{f}^{\circ} = -1300 = 2(-394) + (-286) - \mathbf{Z}$ whence $\mathbf{Z} = 2(-394) + (-286) - (-1300)$	(1)	
	<pre>= +226 kJ mol⁻' value sign allow ecf on wrong equation</pre>	(1) (1)	[6]
		[Total:	16]

2

(a)	N≡N <i>or</i> t	N triple bond is (ventice here N_2 molecule h	ery) strong as no polarity			[1]
(b)	3M(N ₂ (($g(s) \rightarrow 3Mg^{2+}(g)$ $g(g) \rightarrow 2N^{3-}(g)$	$\Delta H_1 = 3 \times \\ \Delta H_2 = 994$	148 + 3 × 2186 = 7(+ 2 × 2148 = 5290	002	
	LE	$= -\Delta H_1 - \Delta H_2 - A_2$	461 = -12,753	(kJ mol ^{−1})	(–[1] for e	ach error) [3]
(c)	(i)	Li_3N + $3H_2O$ \rightarrow	→ NH ₃ + 3LiOH	(balanced equation)		[1]
	(ii)	advantage:	no high pressure Li is expensive or Li would need	/temperature/catalyst to be recycled/remov	needed/standard con ed	ditions used [1]
			or LiOH by-produ or this would be a	uct is corrosive/strong a batch, rather than c	ly basic ontinuous process	[1]
(d)	(i)	Li₃N: 100 × 14/3 urea: 100 × 28/6	5 = 40% N 60 = 47% N			[1] [1]
	(ii)	amide				[1]
	(iii)	$NH_2CONH_2 + H_2$ or $NH_2CONH_2 + H_2$	$20 \rightarrow 2NH_3 + C($ $or \rightarrow NH_2CO_2F$ $+ 2H_2O \rightarrow 2NH_3$	D ₂ 1 + NH ₃ .+ H ₂ CO ₃		[1]
	 (iv) The LiOH would be strongly alkaline or would increase the pH of the soil or would 'burn' the crops/reduce plant growth/stunt plants 				[1]	
						[10tal: 12]

3

in their standard states under standard conditions (1) [3] $\begin{array}{rl} & & N_2H_4(I) \ + \ O_2(g) \ \rightarrow \ N_2(g) \ + \ 2H_2O(g) \\ \Delta H_f^{\circ}/kJ \ mol^{-1} & +50.6 & -241.8 \\ \Delta H^{\circ}_{\ reaction} \ = \ 2(-241.8) \ - \ (+50.6) \ (1) \\ & = \ -534.2 \ kJ \ mol^{-1} \ (1) \end{array}$ (b) (ii) E_a is too high (1) (iii) products are H₂O and N₂ which are harmless/non toxic or are already present in the atmosphere (1) [4] (C) ('dot-and-cross' diagram (1) ... Η Ν Η X • X Η (ii) (1)(iii) minimum is Η N н allow bond angle around N atom between 109° and 104° (1) [4] (d) -2 (1) [1] [Total: 12]

(a enthalpy change when 1 mol of a compound is formed (1)

from its elements (1)

4