Born-Haber Cycles

Mark Scheme 3

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Chemical Energetics
Sub-Topic	Born-Haber Cycles
Paper Type	Theory
Booklet	Mark Scheme 3

Time Allowed: 56 minutes

Score: /46

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

 $\begin{tabular}{lll} 1 & (a) $Mg^+(g)$ \to $Mg^{2^+}(g)$ + e^- & eqn. \\ & state symbols & (1) \\ \end{tabular}$

(ii) $736 + 1450 = +2186 \text{ kJ mol}^{-1}$ (1)

(b) (i) dissolves 6 – 7 (1)

(ii) does not dissolve/slightly soluble (1) 8 – 11 (1) [4]

(c) (i) $Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2NH_3$ (1)

(ii) Mg_3N_2 N is -3 (1) NH_3 N is -3 (1)

No **because** there is no change in the oxidation no. of N (1) [4]

e.c.f on (c)(i) and values of oxidation numbers

CHEMISTRY ONLINE TITION

[Total: 11]

(ii) molecule contains both ketone and alkene (1)

(b) (
$$C_2H_2O + 2O_2 \rightarrow 2CO_2 + H_2O$$
 (1)

or
$$n(C_2H_2O) = \frac{42}{3.5} = 0.0833 (1)$$

 $n(CO_2) = 2 \times 0.083 = 0.0166 (1)$
vol. of $CO_2 = 0.0166 \times 24 = 4.0 \text{ dm}^3 (1)$
allow e.c.f. on wrong eqn. in **(b)(i)**
penalise significant figure error

[4]

(c) (enthalpy change when
1 mol of a compound is formed (1)
from its elements (1)
in their standard states under standard conditions (1)

(ii) C + O₂
$$\rightarrow$$
 CO₂ -395 kJ mol^{-1}
H₂ + ½O₂ \rightarrow H₂O -286 kJ mol^{-1}
C₂H₂O + 2O₂ \rightarrow 2CO₂ + H₂O $-1028 \text{ kJ mol}^{-1}$
2C + H₂ + ½O₂ \rightarrow C₂H₂O ΔH = 2(-395) + (-286) -(-1028)
= -48 kJ mol⁻¹
correct cycle (1) use of 2 for C/CO₂ (1) answer (1) [6]

(d) H₂O/water/steam (1)

[1]

[Total: 14]

3	(a)	mole	(1)		
		I_2		(1)	[2]
	(b)	(i)	cations held in 'sea' of delocalised electrons	(1)	
			by strong metallic bonds	(1)	
		(ii)	van der Waals' forces between molecules	(1)	
			van der Waals' forces are weak	(1)	[4]
	(c)		oxidising agent	(1)	
		(ii)	iodine is a weaker oxidising agent than chlorine	(1)	[2]
				[Tot	tal: 8]

4 (a)

550

sulphur atom has 6 /carbon atom has 4 electrons	(1)
---	-----

(d)
$$C + O_2 \rightarrow CO_2$$
 -395
 $S + O_2 \rightarrow SO_2$ -298
 $CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2$ -1110

C + 2S
$$\rightarrow$$
 CS₂ ΔH = -395 + 2(-298) -(-1110)

cycle (1) use of 2 for
$$S/SO_2$$
 (1) answer (1) [3]

(e)
$$CO_2$$
 (1)

$$N_2$$
 (1)

$$CS_2 + 2NO \rightarrow CO_2 + 2S + N_2$$
 (1)

completely correct equation gets (3) consequential errors to be decided at co-ordination [3]

[Total: 13]