Born-Haber Cycles

Mark Scheme 4

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Chemical Energetics
Sub-Topic	Born-Haber Cycles
Paper Type	Theory
Booklet	Mark Scheme 4

Time Allowed:
Score:
Percentage:

66 minutes
/55
/100

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	777.5%	70%	62.5%	57.5%	45%	$<45 \%$

1 (a (i)

S atom has 6 and C atom has 4 electrons
$\mathrm{S}=\mathrm{C}$ double bonds (4 electrons) clearly shown
(ii) linear and 180°
(b) ($\mathrm{CS}_{2}+3 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{SO}_{2}$
(ii) enthalpy change when 1 mol of a substance
is burnt in an excess of oxygen/air
or is completely combusted
under standard conditions
(1) $[3]$
(c)

$$
\begin{align*}
& \mathrm{CS}_{2}+3 \mathrm{O}_{2} \rightarrow \underset{\mathrm{CO}_{2}}{ } \rightarrow \underset{\mathrm{Cl}}{-395}+\underset{2}{2 \mathrm{SO}_{2}} \tag{1}\\
& \Delta H_{\mathrm{f}} \text { •/ } / \mathrm{kJ} \mathrm{~mol}^{-1} \mathrm{x} \tag{1}\\
& \Delta H_{\text {reaction }}=-395+2(-298)-\mathrm{x}=-1110 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1}\\
& \text { gives } x=-395+(-596)+1110=+119 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{align*}
$$

(d) ($\mathrm{CS}_{2}+2 \mathrm{NO} \rightarrow \mathrm{CO}_{2}+2 \mathrm{~S}+\mathrm{N}_{2}$
or
$\mathrm{CS}_{2}+2 \mathrm{NO} \rightarrow \mathrm{CO}+2 \mathrm{~S}+\mathrm{N}_{2} \mathrm{O}$
correct products (1)
correct equation (1)
both required (1)
(a (i) $\mathrm{RBr}+\mathrm{OH}^{-} \longrightarrow \mathrm{ROH}+\mathrm{Br}^{-}$
(ii) nucleophilic substitution
(b)

plotting of all points (plotted to within $1 / 2$ small square) [1] good line of best fit [1]
(ii) $t_{1 / 2}=118 \mathrm{~min}$ or $79 \mathrm{~min}(\pm 5 \mathrm{~min})$
or
construction lines for two half-lives and mention that half-life is constant
or
calculate the ratio of two rates at two different concentrations
(iii) either ratio of initial rates (slopes)
or
ratio of $t_{1 / 2}$
or
ratio of times for $[\mathrm{RBr}]$ to fall to the same level: all should be $=1.5$
therefore reaction is first order w.r.t. $\left[\mathrm{OH}^{-}\right]$
(iv) rate $=k[\mathrm{RBr}]\left[\mathrm{OH}^{-}\right]$
initial rate $=0.01 / 185=5.4 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~min}^{-1}\right)$
$\mathrm{k}=5.4 \times 10^{-5} /(0.01 \times 0.1)=0.054\left(\mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~min}^{-1}\right)$
(c)

four marking points: one activation "hump"
$\underline{2} \mathrm{NOBr}$ (not just NOBr)
ΔH labelled correctly (arrow down, or double headed, or just a line) $E_{\text {a }}$ labelled correctly (arrow up, or double headed, or just a line) all four points [2]
three or two points [1]
[Total: 11]

3 (a (i) alkanes or paraffins not hydrocarbons
(ii) $\mathrm{C}_{9} \mathrm{H}_{20}+14 \mathrm{O}_{2} \rightarrow 9 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$
(b) (carbon
carbon monoxide (names required)
(ii) CO is toxic or affects or combines with haemoglobin or carbon causes respiratory problems
(iii) $\mathrm{C}_{14} \mathrm{H}_{30}+15 \mathrm{O}_{2} \rightarrow 28 \mathrm{C}+30 \mathrm{H}_{2} \mathrm{O}$ or $2 \mathrm{C}_{14} \mathrm{H}_{30}+29 \mathrm{O}_{2} \rightarrow \mathbf{2 8 C O}+3 \mathrm{HH}_{2} \mathrm{O}$ or other balanced equations such as

$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{30}+11 \mathrm{O}_{2} \rightarrow \mathbf{7 C}+7 \mathrm{CO}+15 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{C}_{14} \mathrm{H}_{30}+18 \mathrm{O}_{2} \rightarrow \mathbf{7 C O}+\mathbf{7 \mathrm { CO } _ { 2 }}+\mathbf{1 5 \mathrm { H } _ { 2 } \mathrm { O }}
\end{aligned}
$$

(c) enthalpy change when 1 mol of a substance or is completely combusted under standard conditions
(d) working must be shown
(i) heat released $=\mathrm{mc} \delta \mathrm{T}=250 \times 4.18 \times 34.6$
$=36157 \mathrm{~J}=36.2 \mathrm{~kJ}$
(ii) M_{r} of $\mathrm{C}_{14} \mathrm{H}_{30}=198$
mass of $\mathrm{C}_{14} \mathrm{H}_{30}=1.00 \times 0.763=0.763 \mathrm{~g}$
0.763 g of $\mathrm{C}_{14} \mathrm{H}_{30}$ produce 36.2 kJ

198 g of $\mathrm{C}_{14} \mathrm{H}_{30}$ produce $\frac{36.2 \times 198}{0.763}$
$=9394 \mathrm{~kJ} \mathrm{~mol}^{-1}$

4 (a (the energy change) when 1 mol of bonds is broken in the gas phase
(b) (i) (C-X bond energy) decreases/becomes weaker (from F to I) due to bond becoming longer/not such efficient orbital overlap
(ii) (as the bond energy of C-X decreases) the halogenalkanes become more reactive (answer must imply that it is from F to I)
(c) The $\mathrm{C}-\mathrm{Cl}$ bond is weaker than the $\mathrm{C}-\mathrm{F}$ and $\mathrm{C}-\mathrm{H}$ bonds or $\mathrm{C}-\mathrm{Cl}$ bond $(\mathrm{E}=340)$ and $\mathrm{C}-\mathrm{H}(\mathrm{E}=410)$
so is (easily) broken to form $\mathrm{Cl}{ }^{\circ} / \mathrm{Cl}$ radicals/ Cl atoms causing the breakdown of O_{3} into O_{2}
(d) $\mathrm{Cl}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{H}$
$\mathrm{HO}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Cl}$

CTHT
(e) (light/UV/hv or $300^{\circ} \mathrm{C}$
(ii) (free) radical substitution
(iii) $\Delta H=\mathrm{E}(\mathrm{C}-\mathrm{H})-\mathrm{E}(\mathrm{H}-\mathrm{Cl})=410-431=\mathbf{- 2 1} \mathrm{kJ} \mathrm{mol}^{-1}$
(iv) $\Delta H=\mathrm{E}(\mathrm{C}-\mathrm{H})-\mathrm{E}(\mathrm{H}-\mathrm{I})=410-299=+111 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ecf
(v) The reaction with iodine is endothermic or ΔH is positive or requires energy
(vi) $\mathrm{Cl}_{2} \longrightarrow \mathbf{2 C 1} \mathbf{1}^{-}$
$\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathbf{C l}+\mathbf{C l}{ }^{-}$
$\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}+\mathrm{Cl}^{\bullet} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$

