Born-Haber Cycles Mark Scheme 4

Level		Internation	al A Level		
Subject		Chemistry			
Exam Board		CIE			
Торіс		Chemical En	ergetics		
Sub-Topic		Born-Haber	Cycles		
Paper Type		Theory			
Booklet		Mark Schen	ne 4		
Time Allowed: Score: Percentage:	66 minut /55 /100	es TRY			
Grade Boundaries:					
A* A	В	С	D	E	U
>85% 777.5%	70%	67 5%	E7 E0/	10/	

1 (a (i)

0 0 S	°∰c	 ≵0° s
00	С	00

		S atom has 6 and C atom has 4 electrons	(1)	
		S=C double bonds (4 electrons) clearly shown	(1)	
	(ii)	linear and 180°	(1)	
(b)	($CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2$	(1)	
	(ii)	enthalpy change when 1 mol of a substance	(1)	
		is burnt in an excess of oxygen/air		
		or is completely combusted		
		under standard conditions	(1)	[3]
(c)	∆ <i>H</i> f [∈] ∆ <i>H</i> re give	$CS_{2} + 3O_{2} \rightarrow CO_{2} + 2SO_{2}$ $\Rightarrow/kJ \text{ mol}^{-1} x395 + 2(-298) - x = -1110 \text{ kJ mol}^{-1}$ $\Rightarrow x = -395 + (-596) + 1110 = +119 \text{ kJ mol}^{-1}$	(1) (1) (1)	[3]
(d)	($\begin{array}{l} CS_2+2NO \rightarrow CO_2+2S+N_2\\ \textbf{or}\\ CS_2+2NO \rightarrow CO+2S+N_2O \end{array}$		
		correct products	s (1)	
		LULLULN correct equation	า (1)	
	(ii)	from –2 to 0 both required	d (1)	[3]

[Total: 12]

2 (a (i) RBr + OH⁻ \longrightarrow ROH+ Br⁻

(ii) nucleophilic substitution

(b)

plotting of all points (plotted to within ½ small square) [1] good line of best fit [1]

		[8 max 7]
	k = 5.4 x 10^{-5} / (0.01 × 0.1) = 0.054 (mol ⁻¹ dm ³ min ⁻¹)	[1
	initial rate = 0.01 / 185 = 5.4×10^{-5} (mol dm ⁻³ min ⁻¹)	[1
(iv)	rate = k[RBr][OH ⁻]	[1
	therefore reaction is first order w.r.t. [OH ⁻]	[1]
	or ratio of times for [RBr] to fall to the same level: all should be = 1.5	[1]
	ratio of t ¹ / ₂	
(iii)	either ratio of initial rates (slopes)	
	calculate the ratio of two rates at two different concentrations	[1]
	construction lines for two half-lives and mention that half-life is constant	
(ii)	t ½ = 118 min or 79 min (± 5 min) or	

Dr. Asher Rana

[1]

[1] **[2]**

four marking points: one activation "hump" $\underline{2}$ NOBr (not just NOBr) ΔH labelled correctly (arrow down, or double headed, or just a line) E_a labelled correctly (arrow up, or double headed, or just a line) all four points [2] three or two points [1] [2]

[Total: 11]

CHEMISTRYONLINE — TUITION —

(c)

			[Total:	13]
		= 9394 kJ mol ⁻¹	(1)	[5]
		198 g of C ₁₄ H ₃₀ produce $\frac{36.2 \times 198}{0.763}$		
		mass of $C_{14}H_{30} = 1.00 \times 0.763 = 0.763 \text{ g}$ 0.763 g of $C_{14}H_{30}$ produce 36.2 kJ	(1)	
	(ii)	$M_{\rm r} {\rm of}{\rm C}_{14}{\rm H}_{30} = 198$	(1)	
	(i)	heat released = m c δT = 250 × 4.18 × 34.6 = 36157 J = 36.2 kJ	(1) (1)	
	(d) wo	rking must be shown		
	or	is completely combusted under standard conditions	(1)	[2]
	(c) ent is b	halpy change when 1 mol of a substance ournt in an excess of oxygen/air under standard conditions	(1)	
		$C_{14}H_{30} + 18O_2 \rightarrow 7CO + 7CO_2 + 15H_2O$	(1	[4]
		$C_{14}H_{30}$ + 11 $O_2 \rightarrow 7C$ + 7CO + 15 H_2O		
		or other balanced equations such as		
		$2C_{14}H_{30} + 29O_2 \rightarrow 28CO + 30H_2O$		
	(iii)	$C_{14}H_{30}$ + 15 $O_2 \rightarrow 28C$ + 30 H_2O or		
	(ii)	CO is toxic or affects or combines with haemoglobin or carbon causes respiratory problems	(1)	
	(b) (carbon carbon monoxide (names required)	(1) (1)	
	(ii)	$C_9H_{20} + 14O_2 \rightarrow 9CO_2 + 10H_2O$	(1	[2]
3	(a (i)	alkanes or paraffins not hydrocarbons	(1)	

4	(a	(the is b	e energy change) when 1 mol of bonds proken in the gas phase	[1] [1]
				[2]
	(b)	(i)	(C-X bond energy) decreases/becomes weaker (from F to I)	[1
			due to bond becoming longer/not such efficient orbital overlap	[1]
		(ii)	(as the bond energy of C-X decreases) the halogenalkanes become more reactive (answer must imply that it is from F to I) $\label{eq:rescale}$	[1
				[3]
	(c)	The or (e C-C <i>l</i> bond is weaker than the C-F <u>and</u> C-H bonds C-C <i>l</i> bond (E = 340) and C-H (E = 410)	[1]
		so cau	is (easily) broken to form Cl^{\bullet}/Cl radicals/ Cl atoms using the breakdown of O ₃ into O ₂	[1]
				[3]
	(d)	С <i>1</i> - НО	CH ₂ CH ₂ -CO ₂ H CH ₂ CH ₂ -Cl	[1] [1]
		/	ОН	
		$\langle \langle$		
		Br		[1]
				[3]
	(e)	(light/UV/hv or 300°C	[1
		(ii)	(free) radical substitution	[1]
		(iii)	$\Delta H = E(C-H) - E(H-Cl) = 410 - 431 = -21 \text{ kJ mol}^{-1}$	[1]
		(iv)	$\Delta H = E(C-H) - E(H-I) = 410 - 299 = +111 \text{ kJ mol}^{-1}$ ecf	[1]
		(v)	The reaction with iodine is endothermic or ΔH is positive or requires energy	[1]
		(vi)	$Cl_2 \longrightarrow 2Cl^*$ $CH_3CH_2^* + Cl_2 \longrightarrow CH_3CH_2Cl + Cl^*$ $CH_3CH_2^* + Cl^* \longrightarrow CH_3CH_2Cl$	[1] [1] [1]
				[8]