Born-Haber Cycles

Mark Scheme 5

Level	International A Level				
Subject	Chemistry				
Exam Board	CIE				
Topic	Chemical Energetics				
Sub-Topic	Born-Haber Cycles				
Paper Type	Theory				
Booklet	Mark Scheme 5				

Time Allowed: 64 minutes

Score: /53

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

- 1 (a (i) $CH_3Br(g) \longrightarrow CH_3(g) + Br(g)$ [1]
 - (ii) ${}^{1}/_{3} A lC l_{3}(g) \longrightarrow {}^{1}/_{3} A l(g) + C l(g)$ or $A lC l_{3}(g) \longrightarrow A lC l_{2}(g) + C l(g)$ $(A lC l_{3}(g) \longrightarrow A l(g) + 3 C l(g)$ for (1) mark)
 - _ _

[3]

- (b) bond energies decrease from Cl_2 to I_2 [1] due to increasing bond length or increase in number of electron shells [1] which causes less effective orbital overlap or less attraction for the shared pair [1]
 - (ii) either because fluorine is electronegative, (hence each F wants to keep its electrons to itself)or because the bond length is so short there is repulsion between the lone pairs (on
 - F)
 or repulsion between the nuclei (of F)

[4 max 3]

[1]

(c) for chlorine:

$$\Delta H = E(H - H) + E(Cl - Cl) - 2E(H - Cl) = 436 + 242 - (2 \times 431)$$

= -184 kJ mol^{-1} [2]

for iodine:

$$\Delta H = E(H - H) + E(I - I) - 2E(H - I)$$
 = 436 + 151 - (2 × 299)
= -11 kJ mol⁻¹ [1]

- (ii) Hydrides become less thermally stable down the group from Cl to I as the H–X bond energy decreases (more than does the X–X bond energy) [1]
 - [5]

(d) Na O Br

$$15.2 / 23$$
 $31.8 / 16$ $53.0 / 79.9$ [1]
 $\Rightarrow 0.661$ 1.99 0.663
 $\div 0.661 \Rightarrow 1.0$ 3.0 1.0

thus NaBrO₃ [1]

(ii)
$$3Br_2 + 6NaOH \longrightarrow NaBrO_3 + 5NaBr + 3H_2O$$

or $3Br_2 + 6OH^- \longrightarrow BrO_3^- + 5Br^- + 3H_2O$

specie [1] balancing [1]

[4]

[Total: 15]

one mole of CH ₃ OH is completely burned or is burned in an excess of air/oxygen (b) $\Delta H^{\circ}_{\text{reaction}} = -283 + 2(-286) - (-726)$ $= -129 \text{ kJ mol}^{-1}$ correct sign (c) pressure increases rate by increasing frequency of collisions or by increasing concentration of reactants temperature increases rate because more molecules have energy >E _a catalyst increases rate by providing an alternative route of lower E _a		[Total: 12]
one mole of CH ₃ OH is completely burned or is burned in an excess of air/oxygen (b) $\Delta H^{e}_{reaction} = -283 + 2(-286) - (-726)$ $= -129 \text{ kJ mol}^{-1}$ correct sign (c) pressure increases rate by increasing frequency of collisions or by increasing concentration of reactants temperature increases rate	ative route of lower $E_{\rm a}$	(1) (1) [6]
 one mole of CH₃OH is completely burned or is burned in an excess of air/oxygen (b) ΔH^e_{reaction} = -283 + 2(-286) - (-726) = -129 kJ mol⁻¹ correct sign (c) pressure increases rate by increasing frequency of collisions or 	ules have energy >Ea	(1) (1)
one mole of CH ₃ OH is completely burned or is burned in an excess of air/oxygen (b) $\Delta H^{\rm e}_{\rm reaction} = -283 + 2(-286) - (-726)$ $= -129 \text{ kJ mol}^{-1}$		(1) (1)
one mole of CH₃OH is completely burned or	–286) – (–726)	(1) (1) (1) [3]
2 (a) $CH_3OH(I) + {}^3/{}_2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$ the enthalpy change/heat change/heat evolved when	neat change/heat evolved when or	(1) (1) [3]

CHEMISTRY ONLINE TITION

3 (a (i)

or

[1]

(ii) incomplete combustion (of hydrocarbon fuels) or insufficient O₂/air

(iii) NO + CO $\rightarrow \frac{1}{2}N_2 + CO_2$ or CO + $\frac{1}{2}O_2 \rightarrow CO_2$ equation needs to be balanced

[1] **[3]**

(b) $\Delta H = 394 - 2 \times 111 = (+)172 \text{ kJ mol}^{-1}$

[2]

(c) (i) ligand exchange/displacement/replacement/substitution

[1]

(ii)

- d-orbitals are split (by the ligand field) or orbitals near ligands are at higher energy
- the splitting/energy gap depends on the ligands (surrounding the ion) or the metal (ion)
- when <u>an electron</u> moves from lower to higher orbital/energy level or is promoted/ excited
- light/a photon is absorbed or colour seen/reflected/transmitted is complement of colour absorbed ("emitted" contradicts this mark)
- different energy gap means different frequency absorbed means different colour

5 × [1]

(iii) from rows 1 and 3: rate3/rate1 = 2.0 which also equals [[complex]₃]/[[complex]₁] [1] (or this working mark can be awarded for any valid calculation that shows that order w.r.t. complex is

Thus order w.r.t. [complex] = 1 and order w.r.t. [CO] is zero rate equation: rate = k[complex]

[1]

(iv) mechanism 2

[1]

[1]

it's the only one that does **not** involve CO in the rate determining step *or* rate depends on [complex] only. [1]

[11 max 10]

[Total: 15]

4 (a the overall enthalpy change/energy change/ ΔH for a reaction (1)

is independent of the route taken **or** is independent of the number of steps involved provided the initial and final conditions are the same

(1) [2]

(b) (i)
$$K_2CO_3 + 2HCl \rightarrow 2KCl + H_2O + CO_2$$
 (1)

(ii) heat produced =
$$m \times c \times \delta T = 30.0 \times 4.18 \times 5.2$$

= 652.08 J per 0.0200 mol of K₂CO₃ (1)

(iii) $0.020 \text{ mol } K_2CO_3 = 652.08 \text{ J}$

1 mol
$$K_2CO_3 = \frac{652.08 \times 1}{0.0200} = 32604 J$$

enthalpy change = $-32.60 \text{ kJmol}^{-1}$

(1)

(iv) to prevent the formation of KHCO₃ or to ensure complete neutralisation

(1) [4]

(c) (i)
$$KHCO_3 + HCl \rightarrow KCl + H_2O + CO_2$$
 (1)

(ii) heat absorbed =
$$m \times c \times \delta T = 30.0 \times 4.18 \times 3.7$$

= 463.98 J per 0.0200 mol of KHCO₃ (1)

(iii) $0.020 \text{ mol KHCO}_3 = 463.98 \text{ J}$

1 mol KHCO₃ =
$$\frac{463.98 \times 1}{0.0200}$$
 = 23199 J

enthalpy change =
$$+23.20 \text{ kJmol}^{-1}$$
 (1)

(d)
$$\Delta H = 2 \times (+23.20) - (-32.60) = +79.00 \text{ kJ mol}^{-1}$$
 (2)

[Total: 11]