## Born-Haber Cycles

## Mark Scheme 6

| Level | International A Level |
| :--- | :--- |
| Subject | Chemistry |
| Exam Board | CIE |
| Topic | Chemical Energetics |
| Sub-Topic | Born-Haber Cycles |
| Paper Type | Theory |
| Booklet | Mark Scheme 6 |


| Time Allowed: | $\mathbf{7 7}$ minutes |
| :--- | :--- |
| Score: | $/ 64$ |
| Percentage: | $/ 100$ |

Grade Boundaries:

| A* | A | B | C | D | E | U |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $>85 \%$ | $777.5 \%$ | $70 \%$ | $62.5 \%$ | $57.5 \%$ | $45 \%$ | $<45 \%$ |

1 (a (i) either burn or shine light/uv on mixture of $\mathrm{H}_{2}+\mathrm{Cl}_{2}$ but NOT heat
(ii) red/orange/brown colour of bromine decolourises/disappears steamy/misty/white fumes produced container gets warm/hot
(iii) $\mathrm{H}-\mathrm{H}=436$

$$
\begin{equation*}
\mathrm{Cl}-\mathrm{Cl}=244 \quad \mathrm{H}-\mathrm{Cl}=431 \tag{2}
\end{equation*}
$$

$\Delta H=436+244-2(431)$
$=-182 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{H}-\mathrm{H}=4$
$\mathrm{Br}-\mathrm{Br}=193 \quad \mathrm{H}-\mathrm{Br}=3$
$\Delta H=436+193-2(366)$

$$
\begin{equation*}
=-103 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{2}
\end{equation*}
$$

(iv) $\mathrm{H}-\mathrm{Br}$ bond is weaker than the $\mathrm{H}-\mathrm{Cl}$ bond - allow converse.
(b) (i) light
(ii) bonds broken $=\mathrm{C}-\mathrm{H} \& \mathrm{I}-\mathrm{I}=410+151=561$
bonds made $=$ C-I \& H-I $=240+299=539$
$\Delta \mathrm{H}=551-539=+22 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(iii) The overall reaction is endothermic or no strong bonds/only weak bonds are formed or high $\mathrm{E}_{\text {act }}$
(c) (i) homolytic fission is the breaking of a bond to form (two) radicals/neutral species/ odd-electron species
(ii) $\bullet \mathrm{CH}_{2} \mathrm{Cl}$
the $\mathrm{C}-\mathrm{Br}$ bond is the weakest or needs least energy to break/breaks most easily
(d)


Correct chiral atom identified

2 (a (i) a compound which contains only carbon and hydrogen (1)
(ii) separation of compounds by their boiling points (1)
(b) (i) high temperature and high pressure (1)
high temperature and catalyst (1)
(ii) $\mathrm{C}_{11} \mathrm{H}_{24} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}+\mathrm{C}_{6} \mathrm{H}_{12}$ or
$\mathrm{C}_{11} \mathrm{H}_{24} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}+2 \mathrm{C}_{3} \mathrm{H}_{6}$ or
$\mathrm{C}_{11} \mathrm{H}_{24} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}+3 \mathrm{C}_{2} \mathrm{H}_{4}$ (1)
(c)

| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ |  |  |
| :---: | :---: | :---: |
| isomer B | isomer C | isomer D |

(1)
(1)
(1)
(ii) the straight chain isomer (isomer $\mathbf{B}$ above) (1)
it has the greatest van der Waals' forces (1)
because unbranched molecules have greater area of contact/ can pack more closely together (1)
(d) enthalpy change when 1 mol of a substance (1)
is burnt in an excess of oxygen/air under standard conditions
or is completely combusted under standard conditions (1)
(e) (i) heat released $=\mathrm{mc} \delta \mathrm{T}=200 \times 4.18 \times 27.5$ (1)
$=22990 \mathrm{~J}=23.0 \mathrm{~kJ}$ (1)
(ii) 23.0 kJ produced from 0.47 g of E

2059 kJ produced from $\frac{0.47 \times 2059}{23.0} \mathrm{~g}$ of $\mathbf{E}(1)$
$=42.08 \mathrm{~g}$ of E (1)
allow ecf in (i) or (ii) on candidate's expressions
(f) $\mathrm{C}_{3} \mathrm{H}_{6}=42$
$E$ is $\mathrm{C}_{3} \mathrm{H}_{6}$
for ecf, $E$ must be unsaturated and be no larger than $\mathrm{C}_{5}(1)$
(a (i) $\mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4}$ (or similar) or $\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$ (1)
$\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$ (1)
(ii) $2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{2}+\mathrm{HNO}_{3}$ (1)
(iii) $2 \mathrm{ClO}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaClO}_{2}+\mathrm{NaClO}_{3}+\mathrm{H}_{2} \mathrm{O}$ or ionic eqn (1)
(b) (i) $2 \mathrm{CH}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{H}_{2} \mathrm{~S}+9 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+\mathrm{SO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

Formulae (1), balanced (1)
(ii) (The $\mathrm{SO}_{2}$ produced) causes acid rain (1)
or consequence of acid rain - defoliation etc. - or respiratory problem
(iii) $1000 \mathrm{dm}^{3}$ contains $50 \mathrm{dm}^{3}$ of $\mathrm{H}_{2} \mathrm{~S}$
this is $50 / 24$ ( $=2.083$ moles) (1)
$\mathrm{M}_{\mathrm{r}}($ ethanolamine $)=24+7+14+16=61$
therefore mass $=2.083 \times 61=127(.1) \mathrm{g}(1)$ (or ecf)
(iv) acid-base (1)
(v) $\Delta \mathrm{H}=\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{rhs})-\Delta \mathrm{H}_{\mathrm{f}}($ Ihs $)$
$=\{(3 \times 11-2 \times 242)\}-\}\{(2 \times-21-297)\}-1$ for each $\}$ in which there is an error
$=-451+339$
$=-112\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(2)$
[Total: 12]

(ii) $\mathrm{CH}_{4}+\mathrm{I}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{I}+\mathrm{H}$
$\begin{array}{llllll}\text { broken } & \text { C-H } & \text { I-I made } & \text { C-I } & \text { H-I } \\ & 410 & 151 & & 240 & 299\end{array}$
$\Delta H^{\ominus}{ }_{\text {reaction }}=-240+(-299)+410+151$

$$
\begin{equation*}
=+22 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1}
\end{equation*}
$$

(iii) activation energy is too great
$\mathrm{CH}_{4}+\mathrm{Cl} \rightarrow \mathrm{CH}_{3}+\mathrm{HCl}$
$\mathrm{CH}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}$
termination
$\mathrm{CH}_{3}+\mathrm{CH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$ or
$\mathrm{CH}_{3}+\mathrm{Cl} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}$ or
$\mathrm{Cl}+\mathrm{Cl} \rightarrow \mathrm{Cl}_{2}$
(ii) $\mathrm{CH}_{3} /$ methyl radical
(1) $[7]$
(c)

progress of reaction
correct placement of 16 kJ
correct placement of -99 kJ (allow ecf on wrong calculation in (a) (i))
intermediate clearly shown at I
correct 'double peak' shape
second peak lower than first

