Electrolysis, Electrode Potentials & Cells

Question Paper 2

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Electrochemistry
Sub-Topic	Electrolysis, Electrode Potentials & Cells
Paper Type	Theory
Booklet	Question Paper 2

Time Allowed: 80 minutes

Score: /66

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

(a) (i)	With the aid of a fully-labelled diagram, describe the standard hydrogen electrode.
(ii)	Use the <i>Data Booklet</i> to calculate the standard cell potential for the reaction between Cr^{2+} ions and $Cr_2O_7^{2-}$ ions in acid solution, and construct a balanced equation for the
	reaction.
	<i>E</i> ^e _{cell} = V
	equation
(iii)	Describe what you would see if a blue solution of Cr^{2+} ions was added to an acidified solution of $Cr_2O_7^{2-}$ ions until reaction was complete.
	[8]

1

(b) A buffer solution is to be made using $1.00\,\mathrm{mol\,dm^{-3}}$ ethanoic acid, $\mathrm{CH_3CO_2H}$, and $1.00\,\mathrm{mol\,dm^{-3}}$ sodium ethanoate, $\mathrm{CH_3CO_2Na}$.

Calculate to the nearest 1 cm³ the volumes of each solution that would be required to make 100 cm³ of a buffer solution with pH5.50.

Clearly show all steps in your working.

 $K_a (CH_3CO_2H) = 1.79 \times 10^{-5} \,\text{mol dm}^{-3}$

(d) Choose **one** reaction in organic chemistry that is catalysed by an acid, and write the structural formulae of the reactants and products in the boxes below.

[Total: 17]

2	(a)	Wh	at is mear	nt by the t	term standa	ard elect	rode pote	ential, SEF	??		
											[2
	(b)		w a fully la +/Fe²+ ele		iagram of th	ne appar	atus you	could use	to measu	ire the SEP of t	he
											[5]
	(c)	The	reaction	between	Fe ³⁺ ions a	nd I ⁻ ion	s is an ed	quilibrium	reaction.		
				2Fe ³⁺	(aq) + 2I	(aq) 👄	2Fe ²⁺ (ac	q) + I ₂ (a	q)		
		(i)	Use the	Data Boo	klet to calcu	ulate the	∉ <i>E</i> ell f				
		(ii)	Hence st		a reason, v	vhether	there will	be more	products	or more reacta	nts
								·			
	((iii)	Write the	expressi	ion for $K_{\!\scriptscriptstyle m c}$ fo	r this rea	action, an	d state its	s units.		
			$K_{c} =$								
								units			

An experiment was carried out using solutions of Fe^{3+} (aq) and I^- (aq) of equal concentrations. $100\,cm^3$ of each solution were mixed together, and allowed to reach equilibrium.

The concentrations at equilibrium of $Fe^{3+}(aq)$ and $I_2(aq)$ were as follows.

[Fe³⁺(aq)] =
$$2.0 \times 10^{-4}$$
 mol dm⁻³
[I₂(aq)] = 1.0×10^{-2} mol dm⁻³

(iv) Use these data, together with the equation given in (c), to calculate the concentrations of $Fe^{2+}(aq)$ and $I^{-}(aq)$ at equilibrium.

(v) Calculate the K_c for this reaction.

$$K_{c} = \dots$$
 [8]

[Total: 15]

Chl	orine	e gas is manufactured by the electrolysis of brine using a diaphragm cell.
(a)	(i)	Write half-equations, including state symbols, for the reactions occurring at each of the electrodes of a diaphragm cell.
		anode
		cathode
	(ii)	In the diaphragm cell, the anode is made of titanium and the cathode is made of steel.
		Suggest why steel is never used for the anode.
		[3]
(b)		orine is very reactive and will form compounds by direct combination with many ments.
	sod	scribe what you would see when chlorine is passed over separate heated samples of ium and phosphorus. each case write an equation for the reaction.
	sod	ium
	pho	sphorus E M I S T R Y O N I I N E
	pho	
	phc	
	pho	

3

(c) Chlorine reacts with aqueous sodium hydroxide in two different ways, depending on the conditions used. In each case, water, sodium chloride and one other chlorine-containing compound are formed.

For **each** condition below, give the formula of the **other** chlorine-containing compound and state the oxidation number of chlorine in it.

condition	formula of other chlorine-containing compound	oxidation number of chlorine in this compound
cold dilute NaOH(aq)		
hot concentrated NaOH(aq)		

[4]

(d)	Magnesium chloride, ${\rm MgC} l_2$, and silicon tetrachloride, ${\rm SiC} l_4$, each dissolve in or react with water.
	Suggest the approximate pH of the solution formed in each case.
	$MgCl_2$ $SiCl_4$
	Explain, with the aid of an equation, the difference between the two values.
	[5]
	CHRMISTRY ONLINE [Total: 16]

4 (a) The diagram below shows an incomplete experimental set-up needed to measure the $E_{\rm cell}$ of a cell composed of the standard Cu²⁺/Cu electrode and an Ag⁺/Ag electrode.

(i)	State	the	chemical	composition	0
-----	-------	-----	----------	-------------	---

solution A,electrode B.

(ii) Complete the diagram to show the whole experimental set-up.

[4]

(b) The above cell is not under standard conditions, because the [Ag⁺] in a saturated solution of AgC l is much less than 1.0 mol dm⁻³. The $E_{\rm electrode}$ is related to [Ag⁺] by the following equation.

equation 1
$$E_{\text{electrode}} = E_{\text{electrode}}^{\text{e}} + 0.06 \log[\text{Ag}^{+}]$$

(i) Use the *Data Booklet* to calculate the $E_{\text{cell}}^{\text{e}}$ if the cell was operating under standard conditions.

$$E_{cell}^{\Theta} =$$
V

In the above experiment, the E_{cell} was measured at +0.17V.

(ii) Calculate the value of $E_{\text{electrode}}$ for the Ag⁺/Ag electrode in this experiment.

(iii) Use equation 1 to calculate [Ag+] in the saturated solution.

$$[Ag^+] = \dots mol dm^{-3}$$

(c)	Write an expression for $K_{\rm sp}$ of silver sulfate, ${\rm Ag_2SO_4}$, including units.
	K_{sp} = units
	Using a similar experimental set-up to that illustrated opposite, it is found that [Ag ⁺] in a saturated solution of Ag_2SO_4 is $1.6 \times 10^{-2} \text{mol dm}^{-3}$.
	(ii) Calculate the value of $K_{\rm sp}$ of silver sulfate.
	$\mathcal{K}_{sp} = \dots$
	[3]
(d)	Describe how the colours of the silver halides, and their relative solubilities in $NH_3(aq)$, can be used to distinguish between solutions of the halide ions Cl^- , Br^- and I^- .
	[4]
(e)	Describe and explain the trend in the solubilities of the sulfates of the elements in Group II.
	[4]
	[Total: 18]