Electrolysis, Electrode Potentials & Cells ## **Question Paper 7** | Level | International A Level | |------------|--| | Subject | Chemistry | | Exam Board | CIE | | Topic | Electrochemistry | | Sub-Topic | Electrolysis, Electrode Potentials & Cells | | Paper Type | Theory | | Booklet | Question Paper 7 | Time Allowed: 66 minutes Score: /55 Percentage: /100 ## **Grade Boundaries:** | A* | А | В | С | D | E | U | |------|--------|-----|-------|-------|-----|------| | >85% | 777.5% | 70% | 62.5% | 57.5% | 45% | <45% | | (ii) | Write equations to show how the hydrogencarbonate ion, HCO ₃ -, controls the pH of blo | |----------|---| | | | | (iii) | A solution containing both Na_2HPO_4 and NaH_2PO_4 is commonly used as a buffer solution. | | | $H_2PO_4^-(aq) \iff HPO_4^{2-}(aq) + H^+(aq)$ $K_a = 6.2 \times 10^{-8} \text{mol dm}^{-1}$ | | | Calculate the pH of a buffer solution made by mixing 100 cm 3 of 0.5 mol dm $^{-3}$ Na $_2$ HPO $_4$ 100 cm 3 of 0.3 mol dm $^{-3}$ NaH $_2$ PO $_4$. | | | | | (b) Silv | rer phosphate, Ag ₃ PO ₄ , is sparingly soluble in water. | | (i) | Write an expression for the solubility product, $K_{\rm sp}$, of ${\rm Ag_3PO_4}$, and state its units. ${\rm pH} =$ | | | | | | | | | K _{sp} = units: | | (ii) | The numerical value of $K_{\rm sp}$ is 1.25×10^{-20} at 298 K. Use this value to calculate [Ag ⁺ (aq a saturated solution of Ag ₃ PO ₄ . | | | | | | | | | | | | [Ag+(aq)] = moldm ⁻³ | (c) The half-equation for the redox reaction between phosphoric(III) acid and phosphoric(V) acid is shown. $$H_3PO_4(aq) + 2H^+(aq) + 2e^- \iff H_3PO_3(aq) + H_2O(I)$$ $E^a = -0.28 \text{ V}$ Find suitable data from the *Data Booklet* to write an equation for the reaction between H_3PO_3 and $Fe^{3+}(aq)$ ions, and calculate the E_{cell}^{θ} for the reaction. equation: $$E_{\text{cell}}^{\Theta} = \dots V [2]$$ [Total: 12] | (a) | | his question, K , L and M refer to a halogen atom or halide ion. each part question, read the information and complete the answer lines below. | |-----|-------|--| | | (i) | When concentrated sulfuric acid is added to solid Na K , white fumes are produced that turn damp blue litmus paper red. No other colour changes are observed. | | | | identity of K = | | | | equation for reaction | | | | explanation of observation | | | | [3] | | | (ii) | When silver nitrate solution is added to an aqueous solution of NaL, a precipitate forms that remains after the addition of concentrated ammonia solution. | | | | identity of L = | | | | colour of precipitate | | | | equation for reaction | | | (iii) | \mathbf{M}_2 is a liquid at room temperature with a boiling point higher than that of chlorine but lower than that of iodine. | | | | identity of M = | | | | explanation | (b) The diagram below is a simplified representation of a diaphragm cell. (i) Identify each of the products. В C D[3] (ii) Give the equations for the two electrode reactions. anode cathode[2] [Total: 13] | (a) | Complete the following electronic configuration of the Cu ²⁺ ion. | | | | |-----|--|--|--|--| | | 1s ² | 2s ² 2p ⁶ | | | | (b) | | n a free, gas-phase transition metal ion, the d-orbitals all have the same energy, but when the ion is in a complex the orbitals are split into two energy levels. | | | | | (i) | Explain why this happens. | | | | | | | | | | | (ii) | How does this splitting help to explain why transition metal complexes are often coloured? | | | | | | | | | | | | | | | | | (iii) | Why does the colour of a transition metal complex depend on the nature of the ligands surrounding the transition metal ion? | | | | | | [5] | | | | (c) | | w a fully-labelled diagram of the apparatus you could use to measure the E° of a cell apposed of the Fe ³⁺ /Fe ²⁺ electrode and the Cu ²⁺ /Cu electrode. | | | | | | | | | 3 | (d) | | E° for Cu ²⁺ /Cu is +0.34 V. When NH ₃ (aq) is added to the electrode solution, the changes. | |------------|-------|---| | | (i) | Describe the type of reaction taking place between Cu ²⁺ (aq) and NH ₃ (aq). | | | | | | | (ii) | Write an equation for the reaction. | | | | | | | (iii) | Describe the change in the colour of the solution. | | | | | | | (iv) | Predict and explain how the $E_{\text{electrode}}$ might change on the addition of $NH_3(aq)$. | | | | | | | | [1] | | | | [4] | | (e) | | ling's reagent is an alkaline solution of Cu ²⁺ ions complexed with tartrate ions. It is d in organic chemistry to test for a particular functional group. | | | (i) | Name the functional group involved. | | | | | | | (ii) | Describe the appearance of a positive result in this test. | | | | | | | (iii) | Write an equation for the reaction between Cu^{2+} and OH^- ions and a two-carbon compound containing the functional group you named in (i) . | | | | | | (f) | | plution containing a mixture of tartaric acid and its sodium salt is used as a buffer in | | | Cal | ne pre-prepared food dishes.
culate the pH of a solution containing 0.50 mol dm ⁻³ of tartaric acid and 0.80 mol dm ⁻³ ium tartrate. | | | | tartaric acid) = $9.3 \times 10^{-4} \text{mol dm}^{-3}$] | | | | | | | | | | | | | | | | pH =[2] | | | | [-] | | l (a) | What do you understand by the term standard electrode potential? | |-------|--| | | | | | [2] | | (b) | By reference to relevant E^{\oplus} data in the <i>Data Booklet</i> , explain how the halogen/halide electrode potentials relate to the relative reactivity of the halogens as oxidising agents. | | | | | | | | | [2] | | (c) | Use data from the <i>Data Booklet</i> to construct redox equations, and calculate the standard cell potentials, for the reactions between | | | (i) Acidified H ₂ O ₂ (aq) and KI(aq), | | | | | | | | | | | | | | | (ii) $Cl_2(aq) + SO_2(aq)$. | | | | | | | | | | | | CHEMISTRYONLINE | | | | | (d) | Use data from the <i>Data Booklet</i> to predict the likely product of the reaction between $I_2(aq)$ and tin metal, writing a balanced equation for the reaction. | | | 12(aq) and thrifteeld, writing a balanced equation for the reaction. | | | | | | [2] | | | [Total: 10] |