Electrolysis, Electrode Potentials \& Cells
 Mark Scheme 1

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Electrochemistry
Sub-Topic	Electrolysis, Electrode Potentials \& Cells
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	$\mathbf{7 6}$ minutes
Score:	$/ 63$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	777.5%	70%	62.5%	57.5%	45%	$<45 \%$

1 (a (i) m. pt. is high(er)/large(r)/greater (for iron)
density is high(er)/large(r)/greater (for iron)
(ii) (higher m. pt. due to)
strong attraction between cations and electrons or more delocalised electrons
(higher density due to) greater A_{r} and smaller radius
(b) (i) components to be added: voltmeter or \mathbf{V} salt bridge [must be labelled]
(ii) M1: A and B copper (metal) or Cu and iron (metal) or Fe

M2: either \mathbf{C} or \mathbf{D} as $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M}$
M3 C and D Cu^{2+} or CuSO_{4} or CuCl_{2} or $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ etc. and Fe^{2+} or FeSO_{4} etc.
(iii) $E^{\circ}{ }_{\text {cell }}=0.34+0.44=\mathbf{0 . 7 8}(\mathrm{V})$
(iv) if \mathbf{C} is Fe^{2+}; (as [C] increases), the E of the $\mathrm{Fe}^{2+} / \mathrm{Fe}$ increases/becomes more positive/ less negative

```
so the overall cell potential/E cell would decrease/become less positive/more negative
or
if \(\mathbf{C}\) is \(\mathrm{Cu}^{2+}\); (as [C] increases), the E of the \(\mathrm{Cu}^{2+} / \mathrm{Cu}\) increases/becomes more positive/less negative
so the overall cell potential/ \(\mathrm{E}_{\text {cell }}\) would increase/become more positive/less negative
(c) (i) (colour change is) colourless to pink/pale purple
or (end point is the first) permanent (pale) pink/pale purple colour
(ii) \(\left\{\mathrm{n}\left(\mathrm{MnO}_{4}^{-}\right)=0.02 \times 18.1 / 1000=3.62 \times 10^{-4} \mathrm{~mol}\right\}\)
\(\mathrm{n}\left(\mathrm{Fe}^{2+}\right)=5 \times \mathrm{n}\left(\mathrm{MnO}_{4}^{-}\right)=1.81 \times 1 \mathbf{1 0}^{\mathbf{- 3}} \mathbf{~ m o l}\)
mass of \(\mathrm{Fe}=55.8 \times 1.81 \times 10^{-3}=0.101 \mathrm{~g}(\mathrm{M} 2 \times 55.8) \mathrm{ecf}\)
\(M_{\mathrm{r}}=\) mass \(/ \mathrm{moles}=0.500 / 1.81 \times 10^{-3}=\mathbf{2 7 6 . 2} \mathrm{ecf}\)

2 (a A: voltmeter or V or potentiometer
B: platinum or Pt
C: \(1 \mathrm{moldm}^{-3}\) and \(\mathrm{H}^{+}\)or \(\mathrm{HCl}\left(\right.\) or \(\left.0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}\right)\)
D: lead (metal) or Pb
(b) \(\quad \mathrm{a} \checkmark\) in the box next to \(\mathbf{- 0 . 1 7} \mathrm{V}\)
a comment that the \(\left[\mathrm{Pb}^{2+}\right]\) has decreased plus a description of the outcome, e.g. as \(\left[\mathrm{Pb}^{2+}\right]\) decreases (from \(1 \mathrm{moldm}{ }^{-3}\) ), \(\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pb}(\mathrm{s})\) goes over to the left hand side, or as \(\left[\mathrm{Pb}^{2+}\right]\) decreases, \(\mathrm{Pb}^{2+}\) is less likely to be reduced
(ii) \(\quad\left(K_{\mathrm{sp}}=\right)\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl} l^{-}\right]^{2}\)
(iii) if \(\left[\mathrm{PbCl}_{2}\right]=3.5 \times 10^{-2},\left[\mathrm{~Pb}^{2+}\right]=3.5 \times 10^{-2}\) and \(\left[\mathrm{Cl} l^{-}\right]=7.0 \times 10^{-2}\)
(iii) if \(\left[\mathrm{PbCl}_{2}\right]=3.5 \times 10^{-2},\left[\mathrm{~Pb}^{2}\right]=3.5 \times 10^{-2}\) and \([\mathrm{Cl}]=7.0 \times 10^{-2}\)
so \(K_{\text {sp }}=\left(3.5 \times 10^{-2}\right) \times\left(7.0 \times 10^{-2}\right)^{2}=1.715(1.7) \times 10^{-4} \mathrm{~mol}^{3} \mathrm{dm}^{-9}(\geqslant 2 \mathrm{sf})\)
(c) (i) the \(\left(\mathrm{M}^{2+} / \mathrm{M}\right) E^{\ominus}\) for the two elements are very similar or are -0.13 and -0.14 V
so \(\mathrm{Sn}^{2+}\) is quite easily oxidised (to \(\mathrm{Sn}^{4+}\) ) or is a stronger reductant or \(\mathrm{Pb}^{2+}\) is not easily oxidised (to \(\mathrm{Pb}^{4+}\) ) or \(\mathrm{Pb}^{4+}\) is a stronger oxidant or \(\mathrm{Pb}^{4+}\) is easily reduced
(ii) e.g. \(\mathrm{PbCl}_{2}+\mathrm{Zn} \longrightarrow \mathrm{Pb}+\mathrm{ZnCl}_{2}\) (or ionic)
(other acceptable reductants: \(\mathrm{Fe}, \mathrm{Mg}\), Ca but not Na or K)
\(\mathrm{Sn}^{2+}+\mathrm{Br}_{2} \longrightarrow \mathrm{Sn}^{4+}+2 \mathrm{Br}^{-}\)
(other acceptable oxidants: \(\mathrm{VO}^{2+}, \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \mathrm{Ag}^{+}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{~F}_{2}, \mathrm{Fe}^{3+}, \mathrm{MnO}_{4}^{-}\))
(d) \(\quad \mathrm{Pb}^{2+}(\mathrm{g})+2 \mathrm{Cl}^{-}(\mathrm{g}) \longrightarrow \mathrm{PbCl}_{2}(\mathrm{~s})\)
(ii) \(\Delta H_{\mathrm{f}}=\Delta H_{\text {at }}+\mathrm{E}(\mathrm{Cl}-\mathrm{Cl})+1^{\text {st }} \mathrm{IE}+2^{\text {nd }} \mathrm{IE}+2 \times \mathrm{E}_{\mathrm{A}}(\mathrm{Cl})+\mathrm{LE}\) \(-359=195+242+716+1450-2 \times 349+\) LE LE \(=2 \times 349-359-195-242-716-1450\)
LE \(=\mathbf{- 2 2 6 4}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)\)
(iii) \(\mathrm{LE}\left(\mathrm{PbCl}_{2}\right)>\mathrm{LE}\left(\mathrm{PbBr}_{2}\right)\) or more exothermic or stronger lattice
because \(\mathrm{Cl}^{-}\)/chloride anion has smaller radius/size than \(\mathrm{Br}^{-} /\)bromide
\begin{tabular}{|c|c|c|c|}
\hline 3 (a) & ( HCl ) stronger acid/more dissociated/ionised in solution ( HCl has) more ions/higher concentration of ions & 1
1 & [2] \\
\hline (b) (i) & A solution that resists changes in the \(\mathrm{pH} /\) keeps pH fairly constant when small quantities/amounts/vols of acid/ \(\mathrm{H}^{+}\)or base \(/ \mathrm{OH}^{-}\)are added & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \\
\hline (ii) & \begin{tabular}{l}
add (ethanoic acid) to \(\mathrm{NaOH} \mathbf{O R}\) an equation excess (ethanoic acid) \\
OR mix with sodium ethanoate
\end{tabular} & 1 & [4] \\
\hline (c) & \[
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{3}^{+}\right) \mathrm{COOH} \\
& \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & [2] \\
\hline (d) (i) & \begin{tabular}{l}
pKa 2.99 \\
pKa 4.40
\end{tabular} & \begin{tabular}{l}
1 \\
1
\end{tabular} & \\
\hline (ii) & \begin{tabular}{l}

 \\
(S,R) \\
(R,S) \\
any two of the above
\end{tabular} & 2 & [4 \\
\hline
\end{tabular}

4 (a The potential of an electrode compared to that of a standard hydrogen electrode (SHE) or
the EMF of a cell composed of the test electrode and the SHE
all measurement concentrations of \(1 \mathrm{~mol} \mathrm{dm}^{-3}\) and \(298 \mathrm{~K} / 1\) atm pressure
(b)

\(\mathrm{H}_{2}\) and good delivery system [1] \(\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}\) solution labelled [1] platinum electrodes (both) [1] salt bridge and voltmeter [1] \(\mathrm{H}^{+}\)or HCl or \(\mathrm{H}_{2} \mathrm{SO}_{4}\) [1] (acid is not sufficient)
(c) \(\left(E^{\ominus}=0.77-0.54=0.23(\mathrm{~V})\right.\)
(ii) Since \(E^{\ominus}\) is positive/ \(E^{\ominus}>0\)

So more products / the equilibrium will be over to the right / forward reaction is favoured ecf from (c)(i)
(iii) \(K_{\mathrm{c}}=\left[\mathrm{Fe}^{2+}\right]^{2}\left[\mathrm{I}_{2}\right] /\left[\mathrm{Fe}^{3+}\right]^{2}\left[\mathrm{I}^{-}\right]^{2}\)
units are \(\mathbf{~ m o l}^{-1} \mathbf{d m}^{\mathbf{3}}\) ecf on expression
(iv) \(\left(\left[\mathrm{Fe}^{2+}\right]\right.\) must always be twice \(\left[\mathrm{I}_{2}\right]\), so) \(\left[\mathrm{Fe}^{2+}\right]=0.02\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\)
( \(\left[\mathrm{I}^{-}\right]\)must always be equal to \(\left[\mathrm{Fe}^{3+}\right]\), so) \(\left[\mathrm{I}^{-}\right]=2 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\)
(v) \(K_{\mathrm{c}}=\left\{(0.02)^{2} \times 0.01\right\} /\left\{\left(2 \times 10^{-4}\right)^{2} \times\left(2 \times 10^{-4}\right)^{2}\right\}\) correct expression
(allow ecf from incorrect expression in (c)(iii))
(allow ecf from (c)(iv))
\(=\left(4 \times 10^{-6}\right) /\left(1.6 \times 10^{-1.5}\right)=2.5 \times 10^{9}\left(\mathrm{~mol}^{-1} \mathrm{dm}^{3}\right)\)```

