Electrolysis, Electrode Potentials & Cells

Mark Scheme 1

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Торіс	Electrochemistry
Sub-Topic	Electrolysis, Electrode Potentials & Cells
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:		76 minu	76 minutes					
Score:		/63						
Percentage:		/100	/100					
Grade Bou	Grade Boundaries: TUITION —							
A*	А	В	С	D	E	U		
>85%	777.5%	70%	62.5%	57.5%	45%	<45%		

1	(a	(i)	m. pt. is high(er)/large(r)/greater (for iron)[1]density is high(er)/large(r)/greater (for iron)[1]		
		(ii)	(higher m. pt. due to) strong attraction between cations and electrons <i>or</i> more delocalised electrons [1]		
			(higher density due to) greater A _r and smaller radius [1]		
	(b)	(i)	components to be added: voltmeter <i>or</i> V [1] salt bridge [must be labelled] [1]		
		(ii)	M1: A and B copper (metal) or Cu and iron (metal) or Fe [1] M2: either C or D as $1 \mod dm^{-3}/1 M$ [1]		
			M3 C and D Cu^{2+} or $CuSO_4$ or $CuCl_2$ or Cu (NO ₃) ₂ etc. and Fe ²⁺ or FeSO ₄ etc. [1]		
	(iii)	$E_{cell}^{\circ} = 0.34 + 0.44 = 0.78 (V)$ [1]		
	(iv)	if C is Fe^{2^+} ; (as [C] increases), the <i>E</i> of the Fe^{2^+}/Fe increases/becomes more positive/ less negative [1]		
			so the overall cell potential/ E_{cell} would decrease/become less positive/more negative [1]		
			or		
			if C is Cu^{2+} ; (as [C] increases), the E of the Cu^{2+}/Cu increases/becomes more positive/less negative [1]		
			so the overall cell potential/E _{cell} would increase/become more positive/less negative [1]		
	(c)	(i)	(colour change is) colourless to pink/pale purple or (end point is the first) permanent (pale) pink/pale purple colour [1]		
		(ii)	{n(MnO ₄ ⁻) = $0.02 \times 18.1/1000 = 3.62 \times 10^{-4} \text{ mol}$ } n(Fe ²⁺) = $5 \times n(MnO_4^{-}) = 1.81 \times 10^{-3} \text{ mol}$ [1]		
			mass of Fe = 55.8 x 1.81×10^{-3} = 0.101 g (M2 × 55.8) ecf [1]		
			$M_{\rm r}$ = mass/moles = 0.500/1.81 × 10 ⁻³ = 276.2 ecf		
			[Total: 16]		

2	(a A:	voltmeter or V or potentiometer	[1]
	В:	platinum <i>or</i> Pt	[1]
	C :	1 mol dm ⁻³ and H ⁺ or HCl (or 0.5 M H ₂ SO ₄)	[1]
	D:	lead (metal) <i>or</i> Pb	[1]
			4
	(b)	a ✓ in the box next to –0.17 V a comment that the [Pb ²⁺] has decreased plus a description of the outcome, e.g. as [Pb ²⁺] decreases (from 1 mol dm ⁻³), Pb ²⁺ (aq) + 2e ⁻ \rightleftharpoons Pb(s) goes over to the left hand side, <i>or</i> as [Pb ²⁺] decreases, Pb ²⁺ is less likely to be	[1]
		reduced	[1]
	(ii)	$(K_{sp} =) [Pb^{2+}][Cl^{-}]^{2}$	[1]
	(iii)	if $[PbCl_2] = 3.5 \times 10^{-2}$, $[Pb^{2^+}] = 3.5 \times 10^{-2}$ and $[Cl^-] = 7.0 \times 10^{-2}$ so $K_{sp} = (3.5 \times 10^{-2}) \times (7.0 \times 10^{-2})^2 = 1.715 (1.7) \times 10^{-4} \text{ mol}^3 \text{ dm}^{-9} (\ge 2\text{sf})$	[1]
			5
	(c) (i)	the (M ²⁺ /M) E^{e} for the two elements are very similar <i>or</i> are –0.13 and –0.14 V	[1
		E° (Sn ⁴⁺ /Sn ²⁺) = 0.15 V and E° (Pb ⁴⁺ /Pb ²⁺) = 1.69 V	[1]
		so Sn ²⁺ is quite easily oxidised (to Sn ⁴⁺) or is a stronger reductant or Pb ²⁺ is not easily oxidised (to Pb ⁴⁺) or Pb ⁴⁺ is a stronger oxidant or Pb ⁴⁺ is easily reduced	[1]
			[1]
	(ii)	e.g. $PbCl_2 + Zn \longrightarrow Pb + ZnCl_2$ (<i>or</i> ionic) (other acceptable reductants: Fe, Mg, Ca but not Na or K)	[1]
		Sn ²⁺ + Br ₂ \longrightarrow Sn ⁴⁺ + 2Br ⁻ (other acceptable oxidants: VO ²⁺ , Cr ₂ O ₇ ²⁻ , Ag ⁺ , Cl ₂ , Br ₂ , F ₂ , Fe ³⁺ , MnO ₄ ⁻)	[1]
			5
	(d)	$Pb^{2+}(g) + 2Cl^{-}(g) \longrightarrow PbCl_{2}(s)$	[1]
	(ii)	$\Delta H_{f} = \Delta H_{at} + E(Cl - Cl) + 1^{st} IE + 2^{nd} IE + 2 \times E_{A}(Cl) + LE$ -359 = 195 + 242 + 716 + 1450 - 2 × 349 + LE LE = 2 × 349 - 359 - 195 - 242 - 716 - 1450	
		$LE = -2264 (kJ mol^{-1})$	[3
	(iii)	LE(PbCl ₂) > LE(PbBr ₂) or more exothermic or stronger lattice	[1]
		because $Cl^-/chloride$ anion has smaller radius/size than Br ⁻ /bromide	[1]
			•

6

[Total: 20]

			1
3 (a)	(HC <i>l</i>) strong er acid/more dissociated/ionised in solution (HC <i>l</i> has) more ions/higher concentration of ions	1 1	[2]
(b) (i)	A solution that resists changes in the pH/keeps pH <i>fairly</i> constant when small quantities/amounts/vols of acid/H ⁺ or base/OH ⁻ are added	1 1	
(ii)	add (ethanoic acid) to NaOH OR an equation excess (ethanoic acid) OR mix with sodium ethanoate	1 1	[4]
(c)	$CH_{3}CH(NH_{2})COOH + H^{+} \rightarrow CH_{3}CH(NH_{3}^{+})COOH CH_{3}CH(NH_{2})COOH + OH^{-} \rightarrow CH_{3}CH(NH_{2})COO^{-} + H_{2}O$	1 1	[2]
(d) (i)	pKa 2.99 HO \rightarrow HO \rightarrow HO \rightarrow HO \rightarrow HO \rightarrow + +	1	
	pKa 4.40 $HO \xrightarrow{OH} O^{-} \xrightarrow{OH} O^{-} \xrightarrow{OH} O^{-} + H^{+}$	1	
(ii)	$\begin{array}{c} HO \\ HOOC \\ HOOC$	2	[4
	any two of the above		

4 (a The potential of an electrode compared to that of a standard hydrogen electrode (SHE) or the EMF of a cell composed of the test electrode and the SHE [1] all measurement concentrations of 1 mol dm⁻³ and 298 K/1 atm pressure [1]

c) ($E^{\ominus} = 0.77 - 0.54 = 0.23 (V)$	

(ii) Since E^{\ominus} is positive/ $E^{\ominus} > 0$

So more products / the equilibrium will be over to the right / forward reaction is favoured ecf from (c)(i) [1]

(iii) $K_c = [Fe^{2^+}]^2 [I_2] / [Fe^{3^+}]^2 [I^-]^2$ [1] units are **mol**⁻¹ **dm**³ ecf on expression [1] (iv) ([Fe²⁺] must always be twice [I_2], so) [Fe²⁺] = 0.02 (mol dm⁻³) [1 ([I^-] must always be equal to [Fe³⁺], so) [I^-] = 2 × 10⁻⁴ (mol dm⁻³) [1 (v) $K_c = \{(0.02)^2 × 0.01\} / \{(2 × 10^{-4})^2 × (2 × 10^{-4})^2\}$ correct expression [1] (allow ecf from incorrect expression in (c)(iii)) (allow ecf from (c)(iv)) = (4 × 10^{-6}) / (1.6 × 10^{-1.5}) = 2.5 × 10⁹ (mol⁻¹ dm³) [1]

[Total: 15]

[2]

[1]