Electrolysis, Electrode Potentials & Cells

Mark Scheme 2

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Торіс	Electrochemistry
Sub-Topic	Electrolysis, Electrode Potentials & Cells
Paper Type	Theory
Booklet	Mark Scheme 2

Time Allow	wed:	80 minu	80 minutes					
Score:		/66	/66					
Percentag	e: CHF	/100	/100					
Grade Bou	undaries:	-T	UITI	ON				
A*	А	В	С	D	E	U		
>85%	777.5%	70%	62.5%	57.5%	45%	<45%		

1	(a)		
1	(a)	hydrogen gas at 1 atm Pt	
		H^{+}/H^{-1} (1) (1) T^{3} (1) (2) (1)	
		H /HCl at 1 mol dm ^{-s} and 298K H ₂ (g) going in (i.e. not being produced) [1] platinum electrode in contact with solution, with H ₂ bubbling over it [1] H ⁺ or HCl or H ₂ SO ₄ [1] solution at 1 mol dm ⁻³ (or 0.5 M if H ₂ SO ₄) and T=298K, p=1 atm [1]]]]
	(ii)	$E^{9} = 1.33 - (-0.41) = 1.74 \text{ V}$ [1]]
		$Cr_2O_7^{2-} + 14H^+ + 6Cr^{2+} \longrightarrow 8Cr^{3+} + 7H_2O$ [1	
	(iii)	Colour would change from orange [1]]
		to green [1]]
	(b) the pK _a	are are two ways of calculating the ratio: $_a = -\log_{10}(K_a) = -\log_{10}(1.79 \times 10^{-5}) = 4.747 (4.75) \text{ or } [H^+] = 10^{-5.5} = 3.16 \times 10^{-6}$ [1]]
	log	$_{10}([B] / [A]) = pH - pK_a = 0.753 (0.75) or [salt] / [acid] = K_a / [H^+]$ [1	
	∴ or÷ (or	$[B] / [A] = 10^{0.753} = 5.66$ = 1.79 x 10 ⁻⁵ / 3.16 x 10 ⁻⁶ = 5.66 [A] / [B] = <u>0.177</u>) [1] (correct ratio = [3] marks)])
	sin	$ce B + A = 100, \therefore (100-A) / A = 5.66 \Rightarrow vol of acid = 15 cm3vol of salt = 85 cm3$ [1] [4]]]

- (c) ($CH_3CO_2Na + HCl \longrightarrow CH_3CO_2H + NaCl$
 - (ii) $CH_3CO_2H + NaOH \longrightarrow CH_3CO_2Na + H_2O$
- (d) e.g. hydrolysis of esters RCO_2R' (+ H_2O) $\longrightarrow RCO_2H + R'OH$ or its reverse

[3]

[1]

[1] **[2]**

[Total: 17]

- 2 (a The potential of an electrode compared to that of a standard hydrogen electrode (SHE) or the EMF of a cell composed of the test electrode and the SHE [1] all measurement concentrations of 1 mol dm⁻³ and 298 K/1 atm pressure [1]
 - (b) bydrogen - (set bisker) r (se
 - (c) ($E^{\ominus} = 0.77 0.54 = 0.23$ (V)

(ii)	Since E	' is	positive/ E^{\ominus} >0
\'' /		10	

So more products / the equilibrium will be over to the right / forward reaction is favoured ecf from (c)(i) [1]

(iii) $K_c = [Fe^{2+}]^2 [I_2] / [Fe^{3+}]^2 [I^-]^2$ [1]

units are **mol**⁻¹ **dm**³ ecf on expression

- (iv) ($[Fe^{2+}]$ must always be twice $[I_2]$, so) $[Fe^{2+}] = 0.02$ (mol dm⁻³) [1
 - ([I⁻] must always be equal to [Fe³⁺], so) [I⁻] = 2×10^{-4} (mol dm⁻³) [1
- (v) $K_c = \{(0.02)^2 \times 0.01\} / \{(2 \times 10^{-4})^2 \times (2 \times 10^{-4})^2\}$ correct expression [1] (allow ecf from incorrect expression in (c)(iii)) (allow ecf from (c)(iv)) = $(4 \times 10^{-6}) / (1.6 \times 10^{-1.5}) = 2.5 \times 10^9 (\text{mol}^{-1} \text{ dm}^3)$ [1

[8]

[1]

[1]

[2]

3	(a	(i)	anode	$Cl^-(aq) \rightarrow \frac{1}{2}Cl_2(g) + e^-$	(1)		
			cathode	$\begin{array}{lll} H^{\scriptscriptstyle +}(aq) & + & e^{\scriptscriptstyle -} \rightarrow \frac{1}{2}H_2(g) \textbf{or} \\ 2H_2O(I) & + & 2e^{\scriptscriptstyle -} \rightarrow H_2(g) & + 2OH^{\scriptscriptstyle -}(aq) \end{array}$	(1)		
		(ii)	because iror	n in steel will react with chlorine	(1)	[3]	
	(b)	sod burns with a yellow or orange flame or forms a white solid allow – once only – colour of chlorine disappears $2Na + Cl_2 \rightarrow 2NaCl$		ow or orange flame or id y – colour of chlorine disappears NaC <i>l</i>	(1) (1)		
		phosphorus burns with a white or yellow flame or colour of chlorine disappears – if not given for Na – or					
		for	PC <i>1</i> ₅	forms a white or pale yellow solid			
		for	PC <i>1</i> 3	forms a colourless liquid	(1)		
		P +	- $2\frac{1}{2}Cl_2 \rightarrow$	$PCl_5 \qquad \text{or } P_4 + 10Cl_2 \rightarrow 4PCl_5$			
		or					
		P +	$-1\frac{1}{2}Cl_2 \rightarrow$	$PCl_3 \qquad \text{or } P_4 + 6Cl_2 \to 4PCl_3$			
		equ	ation must re	fer to compound described	(1)	[4]	

<u>CHEMISTRY ONLINE</u> — TUITION —

asherrana@chemistryonlinetuition.com

(c) cold dilute aqueous NaOH

	NaOC1 +	(1) (1)
	hot concentrated aqueous NaOH	
	NaC <i>l</i> O ₃ +	(1) (1)
(d)	MgCl ₂ 6.5 to 6.9	(1)
	SiC1 ₄ 0 to 3	(1)
	MgCl ₂ dissolves without reaction or slight or partial hydrolysis occurs	(1)
	SiC <i>l</i> ₄ reacts with water or hydrolysis occurs	(1)
	$\begin{array}{rcl} \text{SiC} \mathit{l}_4 + 2\text{H}_2\text{O} &\rightarrow & \text{SiO}_2 + 4\text{HC} \mathit{l} \text{or} \\ \text{SiC} \mathit{l}_4 + 4\text{H}_2\text{O} &\rightarrow & \text{Si}(\text{OH})_4 + 4\text{HC} \mathit{l} \text{or} \\ \text{SiC} \mathit{l}_4 + 4\text{H}_2\text{O} &\rightarrow & \text{SiO}_2.2\text{H}_2\text{O} + 4\text{HC} \mathit{l} \end{array}$	(1) [5]
		[Total: 16]

CHEMISTRY ONLINE — TUITION —

4	(a	(i)	A = CuSO ₄ B = silver	[1] [1]
		(ii)	salt bridge voltmeter	[1] [1]
				[4]
	(b)	(i)	0.80 - 0.34 = (+) 0.46 V	[1]
		(ii)	If $E_{cell} = 0.17$, this is 0.29 V less than the standard E^{e} , so $E_{Ag \ electrode}$ must = 0.80 – 0.29 = 0.51 V	[1]
		(iii)	$0.51 = 0.80 + 0.06\log [Ag^+]$, so $[Ag^+] = 10^{(-0.29/0.06)} = 1.47 \times 10^{-5} \text{ mol dm}^{-3}$ ecf from (ii)	[1]
				[3]
	(c)		$K_{sp} = [Ag^+]^2[SO_4^{2-}]$ units = mol ³ dm ⁻⁹ ecf on K_{sp}	[1] [1]
		(ii)	$[SO_4^{2-}] = [Ag^+]/2 K_{sp} = (1.6 \times 10^{-2})^2 \times 0.8 \times 10^{-2} = \underline{2.05 \times 10^{-6}} (mol^3 dm^{-9})$	[1]
				[3]
	(d)	AgC AgE	Cl white	[1] [1]
		AgI	yellow	[1]
		Solu	ubility decreases down the group	[1]
				[4]
	(e)	solu as N both enth	ubility decreases down the group M ²⁺ / ionic radius increases In lattice energy <u>and</u> hydration(solvation) energy to decrease Inalpy change of solution becomes more endothermic	[1] [1] [1] [1]
				[4]
			[Total:	18]