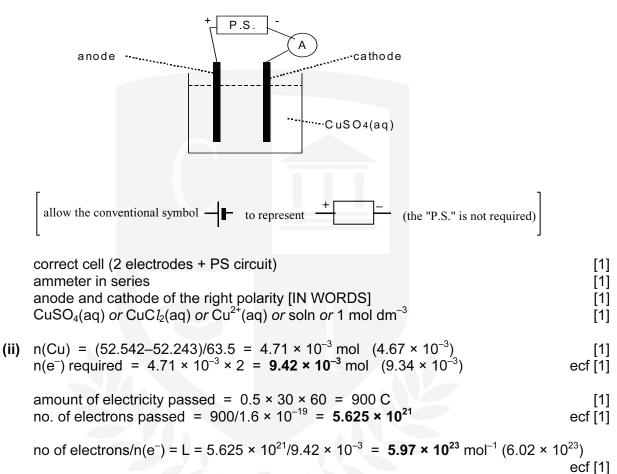

Electrolysis, Electrode Potentials & Cells


Mark Scheme 3

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Торіс	Electrochemistry
Sub-Topic	Electrolysis, Electrode Potentials & Cells
Paper Type	Theory
Booklet	Mark Scheme 3

Time Allowed: Score:		68 minu	68 minutes				
		/56					
Percentag	e: CHH	/100	/100				
Grade Boundaries:							
A*	А	В	С	D	E	U	
>85%	777.5%	70%	62.5%	57.5%	45%	<45%	

(b) (i)

(values in italics are if candidate has used $A_r = 64$, not 63.5. No last mark if not 3 s.f.: correct ans = [5]) [9]

(c)

compound	product at anode	product at cathode	
AgF	2	Ag	
FeSO ₄	O ₂	H ₂	
MgBr ₂	Br ₂	H ₂	

 $\begin{array}{l} 6 \text{ correct} \Rightarrow [5] \\ 5 \text{ correct} \Rightarrow [4] \text{ etc.} \end{array}$

Names can be used instead of symbols. If the atomic symbol (e.g. Br or H or O) is used instead of the molecular formula (e.g. Br₂ etc.) then deduct [1] mark only for the whole table.

[5]

3	(a (i)	E ^o = 0.40 – (–0.83) = 1.23V		
	(ii)	$2H_2 + O_2 \longrightarrow 2H_2O$		
	(iii)	LH electrode will become more negative RH electrode will also become more negative / less positive		
	(iv)	no change ecf from (iii)	(1)	
	(v)	increased conductance or lower cell resistance or increased rate of reaction	(1)	[6]
	(ii) (iii)	$E^{\circ} = 1.47 - (-0.13) = 1.60V$ $PbO_{2} + Pb + 4H^{+} \longrightarrow 2Pb^{2+} + 2H_{2}O$ $PbO_{2} + Pb + 4H^{+} + 2SO_{4}^{2-} \longrightarrow 2PbSO_{4}(s) + 2H_{2}O$ $E^{\circ}_{cell} \text{ will increase}$	(1) (1 (1 (1)	
	()	as [Pb ²⁺] decreases, E _{electrode} (PbO ₂) will become more positive, but E _{electrode} (Pb) will become more negative	(1)	[5]

[Total: 11]

CHEMISTRY ONLINE — TUITION —

4 (a) Reaction II – since electrons are used up / required / gained / received (from external circuit) (1) [1]

(b)	(Pb (Pb	²⁺ + 20 O ₂ + 4	$e^{-} \rightarrow Pb) \qquad \qquad E^{\circ} = -0.13V \\ 4H^{+} + 2e^{-} \rightarrow Pb^{2+} + 2H_2O) \qquad \qquad E^{\circ} = +1.47V \\ two \ correct \ E^{\circ} \ v$	ralues	(1)	
	Cel	l volta	ge is 1.6(0) (V)		(1)	[2]
(c)	(i)	3(+)			(1)	
	(ii)		\prime are less heavy / poisonous / toxic / polluting c c) H_2SO_4 within them	r are safer due to no	(1)	[2]
(d)	(i)	Platir	num or graphite / carbon		(1)	
	(ii)	hydro	r need large quantities of compressed gases whic ogen would need to be liquefied <i>or</i> the reactant i osive / combustible		(1)	[2]
(e)	Gla	SS:	saves energy – the raw materials are easily acce or making glass is energy-intensive	essible / cheap	(1)	
	Steel: saves energy – extracting iron from the ore or mining the ore is energy intensive or saves a resource – iron ore (NOT just "iron") is becoming scarce either or		s becoming scarce either one	e (1)		
	Pla	stics:	saves a valuable / scarce resource : (crude) oil /	petroleum	(1)	[3]
				LINE	Total:	10]

(a (i) $Cu(s) - 2e^{-} \rightarrow Cu^{2+}(aq)$ allow electrons on RHS (1) 5

- (ii) E^{e} for Ag⁺/Ag is +0.80V which is more positive than +0.34V for Cu²⁺/Cu, (1) so it's less easily oxidised (owtte) (1)
- (iii) E° for Ni²⁺ is -0.25V, (1) Ni is readily oxidised and goes into solution as Ni²⁺(aq) (1) [Mark (ii) and (iii) to max 3]
- (iv) $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)(1)$
- (v) E^{e} for Zn^{2+}/Zn is negative / = -0.76V, so Zn^{2+} is not easily reduced. (1)
- (vi) The blue colour fades because Cu²⁺(aq) is being replaced by Zn²⁺(aq) or Ni²⁺(aq) or [Cu²⁺] decreases (1) [7]
- (b) amount of copper = $225/63.5 = 3.54(3) \mod (1)$ amount of electrons needed = 2 × 3.54 = 7.08/9 (7.087) mol (1) no. of coulombs = $20 \times 10 \times 60 \times 60 = 7.2 \times 10^5$ C no, of moles of electrons = $7.2 \times 10^{5}/9.65 \times 10^{4}$ = **7.46** mol (1) percentage "wasted" = 100 × (7.461 - 7.087)/7.461 = 5.01 (5.0)% (accept 4.98-5.10) (1) [4]
- (c) E° data: Ni²⁺/Ni = -0.25V $Fe^{2+}/Fe = -0.44V(1)$

Because the Fe potential is more negative than the Ni potential, the iron will dissolve (1) [2]

[Total: 13]

