Electrolysis, Electrode Potentials \& Cells
 Mark Scheme 4

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Electrochemistry
Sub-Topic	Electrolysis, Electrode Potentials \& Cells
Paper Type	Theory
Booklet	Mark Scheme 4

Time Allowed:
72 minutes

Score:
Percentage: /100

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	777.5%	70%	62.5%	57.5%	45%	$<45 \%$

1 (a (i) $2 \mathrm{H}_{2} \mathrm{O}-4 \mathrm{e} \rightarrow 4 \mathrm{H}^{+}+\mathrm{O}_{2}(1)$
(ii) $2 \mathrm{Cl}^{-}-2 \mathrm{e} \rightarrow \mathrm{Cl}_{2}(1)$
(b) (i) $\mathrm{E}^{\circ}=(1.23-(-0.83))=\underline{2.06 \mathrm{~V}}$ (1)
(ii) $E^{\circ}=(1.36-(-0.83))=\underline{2.19 V}$ (1)
 working shown)
(c) (no change (because $\left[\mathrm{H}_{2} \mathrm{O}\right]$ does not change) (1) smaller/less positive (1)
(ii) The (overall) \underline{E}° for Cl_{2} production will decrease, (whereas that) for $\underline{\mathrm{O}}_{2}$ production will stay the same. (answer could be in terms of 1 st E° decreasing and becoming lower than 2nd)(or E° for Cl_{2} becomes less than for O_{2}) (1)
(d) (i) $\mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{ClO}_{3}^{-}+3 \mathrm{H}_{2}$ (1)
(ii) $\mathrm{n}(\mathrm{C})=250 \times 60 \times 60=\left(9 \times 10^{5} \mathrm{C}\right)(1)$ $\mathrm{n}\left(\mathrm{e}^{-}\right)=9 \times 10^{5} / 96500=9.33 \mathrm{~mol}$ $\mathrm{n}\left(\mathrm{NaClO}_{3}\right)=9.33 / 6=(1.55 \mathrm{~mol})-$ allow ecf (1) $\mathrm{Mr}\left(\mathrm{NaClO}_{3}\right)=106.5$ mass $\left(\mathrm{NaClO}_{3}\right)=1.55 \times 106.5=165.5 \mathrm{~g}(1)(165-166$ gets 3 marks, 993 gets 2 marks as ecf)

2 (a Graphite / graphene
(b) They do not exist as sheets / layers of carbon atoms
(c) The lengths of nanotubes are much shorter than the curvature of the paper / they are so small that they are not effected by rolling
(d) Any molten ionic salt (or plausible organic ionic compounds)
(a (i) \mathbf{A} is $\mathrm{Cl}_{2} /$ chlorine
B is NaCl or HCl or Cl^{-}[or words], etc.
C is salt bridge or $\mathrm{KC} / / \mathrm{KNO}_{3}$, etc.
D is platinum/Pt
E is $\mathrm{Fe}^{2+}+\mathrm{Fe}^{3+}$ or mixture of $\mathrm{Fe}(\mathrm{II})+\mathrm{Fe}(\mathrm{III})$ salts
mention of standard conditions ([$\left.\mathrm{Cl} l^{-}\right]$of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ or Cl_{2} at 1 atmos
or $\mathrm{T}=25^{\circ} \mathrm{C} / 298 \mathrm{~K}$)
(ii) $\mathrm{E}^{\ominus}=\mathrm{E}_{\mathrm{R}}^{\ominus}-\mathrm{E}_{\mathrm{L}}^{\ominus}=0.77-1.36=(-) \mathbf{0 . 5 9 (\mathrm { V }) \text { (ignore sign) }) ~ (~}$
(since R.H. electrode is negative) electrons flow (from right) to left or to the chlorine electrode or anticlockwise or from (beaker) E to (beaker) B
(b) $\quad \Delta \mathrm{H}=3 \times(-167.2)+(-48.5)-(-399.5)$
$=-150.6$ or $151\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(correct ans [2])
(ii) $\underset{\text { (or molecular: } 2 \mathrm{FeCl}_{3}}{2 \mathrm{Fe}^{3+}+\mathrm{Cu} \longrightarrow} 2 \mathrm{Cu}^{2+}+\mathrm{Cu}^{2+} 2 \mathrm{FeCl}_{2}+\mathrm{CuCl}_{2}$)
$\mathrm{E}^{\ominus}=0.77-0.34=(+) \mathbf{0 . 4 3}(\mathrm{V})$
(no mark for -0.43 V)

4 (a anode $\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow 1 / 2 \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{e}^{-}(1)$ cathode $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{H}_{2}(\mathrm{~g})$
or $\quad 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$ (1)
correct state symbols (1)
(b) because the iron in steel will react with chlorine (1)
(c) (i) sodium hydroxide/ NaOH (1)
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$
or $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$ (1)
leaving OH^{-}in solution as NaOH (1)
(d) Na burns with a yellow flame/forms a white solid (1)
$2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}(1)$
\mathbf{P} burns with a white flame/forms a colourless liquid $\left(\mathrm{PCl}_{3}\right)$ or a white solid $\left(\mathrm{PCl}_{5}\right)(1)$ $\mathrm{P}+11 / 2 \mathrm{Cl}_{2} \rightarrow \mathrm{PCl}_{3}$ or $\mathrm{P}_{4}+6 \mathrm{Cl}_{2} \rightarrow 4 \mathrm{PCl}_{3}$ or $\mathrm{P}+21 / 2 \mathrm{Cl}_{2} \rightarrow \mathrm{PCl}_{5}$ or $\mathrm{P}_{4}+10 \mathrm{Cl}_{2} \rightarrow 4 \mathrm{PCl}_{5}(1)$
(e) $\mathrm{MgCl}_{2} 6$ to 7 (1)
$\mathrm{SiCl}_{4} \quad 0$ to 3 (1)
MgCl_{2} dissolves without reaction (1)
$\mathrm{SiCl}_{4} \quad$ reacts with water/hydrolyses (1)
$\mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl}$ or
$\mathrm{SiCl}_{4}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Si}(\mathrm{OH})_{4}+4 \mathrm{HCl}$ or
$\mathrm{SiCl}_{4}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{HCl}(1)$
[Total: 15 max]
(a)

salt bridge + voltmeter
zinc metal $+\mathrm{Zn}^{2+}$
H_{2} (in, not out) $+\mathrm{H}^{+}$
Pt electrode
all solutions at $1 \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{T}=298 \mathrm{~K}$ or $25^{\circ} \mathrm{C}$
(b)

conditions	product at anode	product at cathode
$\mathrm{ZnCl}_{2}(\mathrm{I})$	(chlorine)	zinc [1]
ZnCl_{2} (conc aq)	chlorine [1]	$\left(\mathrm{H}_{2}\right.$ or zinc) (ignore)
ZnCl_{2} (dil aq)	oxygen [1]	hydrogen [1]

[1] for each product in correct place [
(c)

$$
\begin{align*}
\text { LE } & =\mathrm{B}-\mathrm{A} \\
& =-415-(131+908+1730)-\{244+2(-349)\} \\
& =-415-2315 \tag{1}\\
& =-2730\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
\end{align*}
$$

(d) (i)

- instrumental method (e.g. spectrophotometer/colorimeter/conductance meter)
- what is measured (e.g. absorbance/transmission at a stated wavelength or by use of a "suitable" (green) filter or conductance/resistance)
- measurement of time
- relation of time to rate (e.g. gradient of absorbance/time graph, or rate $\propto 1 /$ t)
- repeat with different $\left[\mathrm{Zn}^{2+}\right]$, (but the same $[P A R]$)
- relation of rate to $\left[\mathrm{Zn}^{2+}\right]$ (either by a plot or by simple proportion)
(ii) e.g. add $\mathrm{Br}_{2}(\mathrm{aq})$
decolourises or produces a white ppt.
or add $\mathrm{FeCl}_{3}(a q$ or "neutral"); purple colour produced

