Electrolysis, Electrode Potentials & Cells

Mark Scheme 4

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Торіс	Electrochemistry
Sub-Topic	Electrolysis, Electrode Potentials & Cells
Paper Type	Theory
Booklet	Mark Scheme 4

Time Allow	wed:	72 minu	72 minutes					
Score:		/60	/60					
Percentag	e: CHH	/100	/100 STRY ONLINE					
Grade Bou	Grade Boundaries: TUITION ——							
A*	А	В	С	D	E	U		
>85%	777.5%	70%	62.5%	57.5%	45%	<45%		

- 1 (a (i) $2H_2O 4e \rightarrow 4H^+ + O_2(1)$
 - (ii) $2Cl^- 2e \rightarrow Cl_2(1)$
 - **(b)** (i) $E^{\circ} = (1.23 (-0.83)) = 2.06V (1)$
 - (ii) $E^{\circ} = (1.36 (-0.83)) = 2.19V (1)$ (in (i) if (a)(i) as $4(OH^{-}) - 4e \rightarrow 2H_2O + O_2$ ecf is 0.4 - (-0.83) = 1.23 (1) - needs working shown) [2]
 - (c) (<u>no change</u> (because [H₂O] does not change) (1) smaller/less positive (1)
 - (ii) The (overall) $\underline{E^{\circ} \text{ for } Cl_2 \text{ production will decrease}}$, (whereas that) for $\underline{O_2 \text{ production will}}$ stay the same. (answer could be in terms of 1st E° decreasing and becoming lower than 2nd)(or E° for Cl_2 becomes less than for O_2) (1) [3]
 - (d) (i) $Cl^- + 3H_2O \rightarrow ClO_3^- + 3H_2(1)$
 - (ii) $n(C) = 250 \times 60 \times 60 = (9 \times 10^5 C) (1)$ $n(e^-) = 9 \times 10^{5/96500} = 9.33 \text{ mol}$ $n(NaClO_3) = 9.33/6 = (1.55 \text{ mol}) - \text{allow ecf (1)}$ $Mr(NaClO_3) = 106.5$ mass $(NaClO_3) = 1.55 \times 106.5 = 165.5 \text{ g (1)} (165 - 166 \text{ gets 3 marks, 993 gets 2 marks}$ as ecf) [4]

[Total: 11]

[2]

asherrana@chemistryonlinetuition.com

2	(a	Graphite / graphene	(1)	
	(b)	They do not exist as sheets / layers of carbon atoms	(1)	
	(c)	The lengths of nanotubes are much shorter than the curvature of the paper / they are so small that they are not effected by rolling	(1)	
	(d)	Any molten ionic salt (or plausible organic ionic compounds)	(1)	[Total: 4]

<u>CHEMISTRY ONLINE</u> — TUITION —

3	(a	(i)	A is Cl ₂ /chlorine
---	----	-----	--------------------------------

		B is NaCl or HCl or Cl ⁻ [or words], etc.	[1]	
		C is salt bridge or KC1/KNO ₃ , etc.	[1]	
		D is platinum/Pt	[1]	
		E is Fe^{2+} + Fe^{3+} or mixture of $Fe(III)$ + $Fe(III)$ salts	[1]	
		mention of standard conditions ([C l^-] of 1 mol dm ⁻³ or C l_2 at 1 atmos or T = 25°C/298 K)	[1]	
	(ii)	$E^{e} = E^{e}_{R} - E^{e}_{L} = 0.77 - 1.36 = (-)0.59$ (V) (ignore sign)	[1]	
		(since R.H. electrode is negative) electrons flow (from right) to left <i>or</i> to the chlorin electrode <i>or</i> anticlockwise <i>or</i> from (beaker) E to (beaker) B	ne [1]	[8]
(b)		$\Delta H = 3 \times (-167.2) + (-48.5) - (-399.5)$ = -150.6 or 151 (kJ mol ⁻¹) (correct ans [2])	[1] [1	
	(ii)	$2Fe^{3+} + Cu \longrightarrow 2Fe^{2+} + Cu^{2+}$ (<i>or</i> molecular: 2FeCl ₃ + Cu \longrightarrow 2FeCl ₂ + CuCl ₂)	[1]	
		E ^e = 0.77 – 0.34 = (+) 0.43 (V) (no mark for –0.43V)	[1]	[4]
		[Total: 12 m	ıax	11]

4	(a	anode $Cl^{-}(aq) \rightarrow \frac{1}{2} Cl_2(g) + e^{-}(1)$ cathode $H^{+}(aq) + e^{-} \rightarrow \frac{1}{2}H_2(g)$ or $2H_2O(I) + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq) (1)$ correct state symbols (1)	[2]
	(b)	because the iron in steel will react with chlorine (1)	[1]
	(c) (d)	 (i) sodium hydroxide/NaOH (1) 2H₂O + 2e⁻ → H₂ + 2OH⁻ or 2H⁺ + 2e⁻ → H₂ (1) leaving OH⁻ in solution as NaOH (1) Na burns with a yellow flame/forms a white solid (1) 	[3]
		2Na + $Cl_2 \rightarrow 2NaCl(1)$ burns with a white flame/forms a colourless liquid (PC l_3) or a white solid (PC l_5) (1) P + $1\frac{1}{2}Cl_2 \rightarrow PCl_3$ or P ₄ + $6Cl_2 \rightarrow 4PCl_3$ or P + $2\frac{1}{2}Cl_2 \rightarrow PCl_5$ or P ₄ + $10Cl_2 \rightarrow 4PCl_5$ (1)	[4]
	(e)	$\begin{array}{ll} \text{MgC}l_2 & 6 \text{ to } 7 (1) \\ \text{SiC}l_4 & 0 \text{ to } 3 (1) \\ \text{MgC}l_2 & \text{dissolves without reaction (1)} \\ \text{SiC}l_4 & \text{reacts with water/hydrolyses (1)} \\ \text{SiC}l_4 + 2\text{H}_2\text{O} \rightarrow \text{SiO}_2 + 4\text{HC}l \text{ or} \\ \text{SiC}l_4 + 4\text{H}_2\text{O} \rightarrow \text{Si}(\text{OH})_4 + 4\text{HC}l \text{ or} \\ \text{SiC}l_4 + 4\text{H}_2\text{O} \rightarrow \text{SiO}_2.2\text{H}_2\text{O} + 4\text{HC}l (1) \end{array}$	[5]
		[Total: 15 ma	ax]

<u>CHEMISTRY ONLINE</u> — TUITION —

5 (a)

salt bridge + voltmeter zinc metal + Zn^{2^+} H₂ (in, *not* out) + H⁺ Pt electrode all solutions at 1 mol dm⁻³ T = 298K *or* 25°C [1] [1] [1] [1] [1] [1] **[6]**

(b)

conditions	product at anode	product at cathode
ZnCl ₂ (I)	(chlorine)	zinc [1]
ZnCl ₂ (conc aq)	chlorine [1]	$(H_2 \text{ or } zinc) (ignore)$
ZnC <i>l</i> ₂(dil aq)	oxygen [1]	hydrogen [1]

[1] for each product in correct place [[4]

(c)

LE	= B – A		
	= -415 - (131 +	- 908 + 1730) – {244 +	· 2(-349)}
		[1]	[1]
	= -115 - 2315		

$$= -2730 (kJ mol^{-1})$$

[1] (correct answer = [3]: deduct [1] for each error) [3]

(d) (i)

- instrumental method (e.g. spectrophotometer/colorimeter/conductance meter)
- what is measured (e.g. absorbance/transmission at a **stated** wavelength or by use of a "suitable" (green) filter or conductance/resistance)
- measurement of time
- relation of time to rate (e.g. gradient of absorbance/time graph, or rate $\propto 1/t$)
- repeat with different [Zn²⁺], (but the same [PAR])
- relation of rate to [Zn²⁺] (either by a plot or by simple proportion)

(all 6 points are unconditional on each other) any 5 points [5]

[Total: 20]