Electrolysis, Electrode Potentials & Cells

Mark Scheme 6

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Electrochemistry
Sub-Topic	Electrolysis, Electrode Potentials & Cells
Paper Type	Theory
Booklet	Mark Scheme 6

Time Allowed: 64 minutes

Score: /53

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

1 **(a)** $O_2 + 4H^+ + 4e^ \rightarrow$ 2H₂O (or equation ÷ 2) [1] (b) ⊕ [1] **(c)** 1.23 (V) (ignore sign) [1] (d) a better/larger salt bridge or a diaphragm or larger (area of) electrodes or increase concentrations/pressure [1] 1 (e) time = $400 \times 24 \times 60 \times 60 = 34560000$ seconds [1] charge = current x time = 0.01 x 34 560 000 = 345 600 C ecf [1] moles of H = 345 600/96 500 = 3.6 mol ∴ mass of H = **3.6 g** ecf [1] 3 (f) advantages: less pollution/CO₂/NO_x etc. or cleaner by-products less dependence on fossil fuels/finite resources any one [1] disadvantages: more expensive (to develop or to run) takes up more space poor power-to-volume ratio hydrogen is difficult to store or to transport any one [1] NOT hydrogen is explosive/flammable 2 Total 9

2 (a) The EMF of a cell made up of the test electrode and a standard hydrogen electrode. [1] EMF measured under standard conditions of T, P and concentration [1] 2 (i) $E_{left} = E_{right} - E_{cell} = 0.34 - 0.76 = -0.42$ (V) (b) [1] (ii) _____ (arrow from left to right) [1] (iii) | pink/red solid/ppt or copper will be formed or blue solution fades or M dissolves/corrodes [1] $Cu^{2+} + M \rightarrow Cu + M^{2+}$ [1] Ш hydrogen/gas evolved or M dissolves (do not allow "M dissolves" for [2] marks in both I and II) [1] $M + 2H^{+} \rightarrow M^{2+} + H_{2}$ [1] 6 (c) (i) polarity of d. c. source: Θ is on the left, \oplus is on the right [1] electrolyte is Cu²⁺(aq)/CuSO₄/CuCl₂/Cu(NO₃)₂ etc. or name [1] (ii) moles of Cu = 0.5/63.5 $= 7.87 \times 10^{-3}$ [1] moles of $e^{-} = 2 \times 7.87 \times 10^{-3}$ $= 1.57 \times 10^{-2}$ no. of coulombs = $96500 \times 1.57 \times 10^{-2} = 1517$ (C) [1] ecf in n(e⁻) time = 1520/0.5[1] ecf in coulombs

Total 13

5

Question	Scheme				Total
3 (a)	name of particle	relative mass	relative charge		
	proton		+	[1]	
	electron	1/1836	-	[1]	
	neutron		0	[1]	[3]
(b) (i)	Mass of an atom(s)			[1]	
	relative to 1/12 th (the mas OR relative to carbon-12 which	[1]	[2]		
(ii)	% of third isotope = 10				
	$\frac{(24\times79)+(26\times11.0)+10x}{100}=24.3$				
	10x = 248				
	x = 24.8 (3s.f.)	[1]	[3]		
(c) (i)	anode $l^- \rightarrow Cl_2 + 2e^-$ cathode $l^+ + 2e^- \rightarrow Mg$			[1] [1]	[2]
(ii)	$\begin{array}{c cccc} Mg & O & H \\ \hline 31.65 & 20.84 & 1.31 \\ \hline 24.3 & 16 & 1 \end{array}$	C1 46.2 35.5		[1]	
	1.30 1.30				
	MgOHC1				[2]
(d) (i)	Na ₂ O basic/alkaline; A <i>l</i> ₂ O ₃ amphoteric/acidic and basic; SO ₃ acidic Na ₂ O (giant) ionic AND SO ₃ (simple/molecular) covalent			[1] [1]	[2]
(ii)	$Na_2O + 2HCl \rightarrow 2NaCl +$	H ₂ O		[1]	
	$Al_2O_3 + 6HCl \rightarrow 2AlCl_3 +$	3H ₂ O		[1]	
	$Al_2O_3 + 2NaOH + 7H_2O$ $Al_2O_3 + 2NaOH + 3H_2O$, , , ,	₂ OR	[1]	
	$Al_2O_3 + 2NaOH \rightarrow 2Na$	A1O ₂ + H ₂ O OR	ND.		
	$Al_2O_3 + 2OH^- + 7H_2O$ $Al_2O_3 + 2OH^- + 3H_2O$	\rightarrow 2[A l (OH) ₄] OR	JK		
	$Al_2O_3 + 2OH^- \rightarrow 2AlO_2^- + H_2O$				
	$SO_3 + NaOH \rightarrow NaHSO_4$ OR $SO_3 + 2NaOH \rightarrow Na_2SO_4 + H_2O$				[4]

4	(a (i)	$K_{sp} = [Ag^{+}(aq)]^{2}[SO_{4}^{2-}(aq)]$ and units: mol ³ dm ⁻⁹	
	(ii)	$K_{sp} = (2 \times 0.025)^2 \times (0.025) = 6.25 \times 10^{-5}$	
	(b)	ΔH^{0}_{latt} ΔH^{0}_{hyd} ΔH^{0}_{hyd} ΔH^{0}_{hyd} $Ag_{2}SO_{4}(aq)$ or $2Ag^{+}(aq) + SO_{4}^{2-}(aq)$	1 1 1
	(c) (i)	$E_{\text{cell}}^{\text{e}} (= 0.80 - 0.77 =) (+) 0.03 \text{V} \text{ and } \text{Ag}^{+}/\text{Ag or } \text{Ag/silver or } \text{right}$	1
	(ii)	E_{cell} would be less positive/more negative	1
	()	because the [Ag ⁺ (aq)] (in the Ag electrode) is less than 1.0 mol dm ⁻³	
	(iii)	• no change	
		more negative/less positive	1
	(iv)	the [Ag ⁺ (aq)] will decrease	
		$E_{\text{electrode}}$ becomes less positive or due to the common ion effect	
	(d)	$[Fe^{3+}(aq)] = 0.2 \text{ mol dm}^{-3}$	
		$[H^+] = \sqrt{(c.K_a)} = \sqrt{(0.2 \times 8.9 \times 10^{-4})} \text{ or } 1.33 \times 10^{-2} \text{ (mol dm}^{-3})$ $pH = -log([H^+]) = 1.9 \text{ (or } 1.87 - 1.89)$	
			tal: 13]