

Phone: +442081445350

www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

CHEMISTRY PHYSICAL CHEMISTRY

Level & Board	CIE (A-LEVEL)
TONG	FLECTDOCHEMISTRY
IOPIC:	
PAPER TYPE:	SOLUTION - 1
TOTAL QUESTIONS	13
TOTAL MARKS	166

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

1)

(a)

The reading on the voltmeter gives the electrode potential of Fe³⁺ / Fe²⁺

(b) (i) Sn : Increases from +2 to +4 by units.

O: decreases from -1 to -2 by 1 unit.

(ii)
$$E_{cell}^{\bigcirc} = 177 - 0.15 = +1.62 \text{ V} > 0$$

The reaction is energetically feasible under standard conditions.

(c) (i)
$$Ag^+(aq) + Fe^{2+}(aq) \rightarrow Ag(s) + Fe^{3+}(aq)$$

$$E_{cell}^{\ominus} = 0.80 - 0.77 = +0.03 \text{ V} = 0$$

Ag⁺ will oxidise Fe²⁺ while itself is reduced to metallic Ag.

(ii)
$$2V^{3+}(aq) + Cu^{2+}(aq) + 2H_2O(l) \rightarrow 2VO^{2+}(aq) + Cu(s) + 4H^{+}(aq)$$

 $E_{cell}^{\ominus} = 0$ V, no reaction takes place when V³⁺ and Cu²⁺ are mixed.

am Sorry !!!!!

(a)

	NaBr(l)	NaBr(aq)	CuF ₂ (aq)
Cathode	Na	H_2	Cu
Anode	Br ₂	O ₂	O ₂

(i) In NaBr(l), the ions present are Na⁺ and Br⁻. Hence,

$$Na^+ + e^- \rightarrow Na$$

$$Br^{-} \rightarrow \frac{1}{2}Br_{2} + e^{-T}$$

(ii) In NaBr(aq), the ions present are Na⁺, Br, H⁺ and OH⁻

H⁺ is discharged due to its higher $E^{\ominus}(0 \text{ V})$ compared to Na⁺ (-2.71V).

$$H^+ + e^- \rightarrow \frac{1}{2}H_2$$

OH⁻ ion is discharged preferentially over Br⁻ due to its lower E^{\ominus} value

$$4OH^{-} \rightarrow 2H_2O + O_2 + 4e^{-}$$

(iii) In CuF₂(aq), the ions present and Cu²⁺ , F- and OH⁻

Cu²⁺ is discharged since it has a more positive E^{\ominus} (+0.34 V)

compared to $H^{-}(0 V)$.

 $4OH^{-} \rightarrow 2H_2O + O_2 + 4e^{-}$

Conditions	product at anode	product at
		cathode
ZnCl ₂ (1)	Chlorine	Zinc
ZnCl ₂	Chlorine	hydrogen
(concentrated		
aqueous)		
ZnCl ₂ (dilute	oxygen	hydrogen
aqueous)		

(a)

$$A + LE = B$$

LE = B - A

 $= (-415) - (131 + 1730) - \{244 + 2(-349)\}$

∴ Lattice Energy = 2730 KJ mol⁻¹

4)

- (a (i) A: Cl_2 (chlorine)
 - **B:** NaCl or HCl or Cl⁻(aq)
 - **C:** Salt bridge or KNO₃ (aq)
 - **D:** Platinum / Pt
 - **E:** Mixture of Fe²⁺ Fe³⁺ salts. 1 mol dm⁻³ concentration.

(ii)
$$E_{cell}^{\ominus} = E_{reduction}^{\ominus} - E_{oxidation}^{\ominus} = 0.77 - 1.36 = -0.59 \text{ V}.$$

Direction of electron flow: from right to left

(b) (i)

$$\Delta H_{B_2}^{\ominus} = \Delta H_A^{\ominus} - \Delta H_{B_1}^{\ominus}$$

$$= [(-48.5) + 3(-167.2)] - (-399.5)$$

$$= -550.1 + 399.5 = 150.6 \text{ KJmol}^{-1}$$
(ii) 2Fe³⁺ + Cu \rightarrow 2Fe²⁺ + Cu²⁺
 $E^{\ominus} = 0.77 - 0.34 = + 0.43 \text{V}$

5)

(a) anode $Cl^{-}(aq) \rightarrow \frac{1}{2} Cl_{2(g)} + e^{-1}$

cathode: $H^+_{(aq)} + e^- \rightarrow \frac{1}{2} H_{2(g)}$

- (b) Because the iron in steel will react with chlorine.
 - (c) (i) Sodium hydroxide (NaOH)
 - (ii) $2H_2O + 2e \rightarrow H_2 + 2OH^{-1}$

Leaving OH⁻ in solution as NaOH

(d) sodium: sodium burns with a yellow flame and forms a white solid.

 $2\text{Na} + \text{Cl}_2 \rightarrow \text{SNaCl}$

Phosphorus: Phosphorus burns with a white flame and forms a colorless

liquid (PCI₃)

OR a white solid PCI₅.

 $P_4 + 6Cl_2 \rightarrow 4PCl_3$

 $\mathsf{PCI}_3 + \mathsf{CI}_2 \to \mathsf{PCI}_5$

(e) MgCl2: 6.5 SiCl4:2

MgCl2 dissolves without reaction SiCl4 reacts with water (Hydrolyse)

 $SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCI$

6)

(a) NaCl(s): observation: Dense white fumes

Equation: $2NaCl + H_2SO_4 \rightarrow NaSO_4 + 2HCl$

NaBr(s): observation: Brown fumes

Equation: $2NaBr + 3H_2SO_4 \rightarrow 2NaHSO_4 + 2H_2O + SO_2 + Br_2$

(b) E^{\ominus} values: Cl₂ / Cl⁻ = 1.36, Br₂ = 1.07

 E^{\ominus} of Cl_2 is more positive, and stronger oxidizing agent therefore

HCI will not be oxidized to chlorine

(c) Suitable reductant: Sn^{4+} / Sn^{2+} , $E^{\bigcirc} = 0.15 \text{ V}$

Equation $Sn^{2+} + Br_2 \rightarrow Sn^{4+} + 2Br^{-}$

 E^{\ominus} = reduction – oxidation

= 1.07 - 0.15 = 0.92 V

- 7)
- (a) (i) variable oxidation status
 - (ii) able to form complex ions
- (b) equation: $MnO_4^- + 8H + 5Fe^{2+} \rightarrow Mn^{2+} + Fe^{3+} + 4H_2O$

Method: Measure a known volume of Fe2+ (aq) with the help of a

pipette and

place in conical flask. Add an excess of dilute H_2SO_4 . Titrate the mixture against MnO_4^-

solution of known concentration till permanent pink colour appears. Note the volume of MnO_4^- (aq) Repeat the titration and take average of consistent readings.

(c) (i) $2 \text{ Mn}^{-4} + 5 \text{ SO}_2 2 \text{ H}_2\text{O} \rightarrow 2 \text{ Mn}^{2+} + 5 \text{ SO}^{2-4} + 4 \text{ H}^+$ Oxidation numbers: +7 +4 +2 +6(ii) $1 \text{ Cr}_2\text{O}^{2-7} + 6 \text{ NO}_2 + 2 \text{ H}^+ \rightarrow 2 \text{ Cr}^{3+} + 6 \text{ NO}_3^- + 1 \text{ H}_2\text{O}$ Oxidation numbers: +6 +4 +3 +5

(d) Fe³⁺ is a homogeneous catalyst

Fe³⁺ oxidises I⁻ to I₂ and reduces itself to Fe²⁺

 $2Fe^{3+} + 2I^{-} \rightarrow 2Fe^{2+} + I_2$

Fe²⁺ reduces $S_2O^{2-}_8$ to SO^{2-}_4 and oxidises itself to Fe³⁺

 $2Fe^{2+} + S_2O^{2-}_8 \rightarrow 2Fe^{3+} + 2SO^{2-}_4$

(a) (i)
$$Cu(s) \rightarrow Cu^{2+} + 2e^{-}$$

(ii) E^{\ominus} for Ag+ / Ag is 0.80V more positive than 0.34V for Cu2+ /Cu(s).

Hence silver is less reactive than copper and will not oxidise.

(iii) E^{\ominus} for Ni²⁺/Ni is -0.25V. Nickel will readily oxidise and terms solutions of nickel ions.

(iv) $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ (Pure copper)

(v) E^{\ominus} for Zn²⁺ / Zn is -0.76V. Hence Zn²⁺ will not reduce at cathode.

(vi) $Cu^{2+}(aq)$ are reduced at cathode to copper solid. Thus blue solution fades away leaving Zn^{2+} and Ni^{2+} in solution.

(b) (i) Amount of copper $=\frac{225}{63.5}$ = 3.5433 \approx 3.54 mol

Number of electrons needed = $2 \times 3.5433 = 7.087 \approx 7.09$ mol

No. of coulombs = $1 \times t = 20 \times 10 \times 60 \times 60 = 720000 \text{ C}$

96500 C of charge is carried by 1 moles of electrons.

720000 C of charge is carried by $\frac{720000}{96500}$ = 7.461 moles of electrons.

: 7.46 moles of electrons passed through the cell.

(c) for $Ni^{2+}/Ni = -0.25V$

for $Fe^{2+}/Fe = -0.44V$

iron in the alloy will dissolve because iron is more reactive than Nickel.

- 9)
- (i) The diaphragm cell consists of a titarium anode and a steel cathode. An asbestos diaphragm is placed between the electrodes.

Purified brine solution, consisting of Na⁺ , H⁺ , Cl⁻ and OH⁻ ions, is pumped into

the anode

compartment and the level is kept above that of the cathode compartment.

This allows brine solution to seep through the porous asbestos diaphragm into

cathode side, and also prevents hydroxide ions migrating to the anode.

This sodium hydroxide solution is formed in the cathode compartment.

The Cl- ions are oxidized at the anode and the H+

ions are reduced at the cathode to form chlorine and hydrogen gas respectively. The asbestos diaphragm also prevents sodium hydroxide from making contact with the chlorine, therapy preventing the formation of sodium chlorate (I).

am Sorry !!!!!

(ii) anode: $2Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e^{-}$

cathode: $2H^+(aq) + 2e^- \rightarrow H_2(g)$

(iii) Sodium Hydroxide.

10)

(a) F = Le (b) (i)

(ii) Moles of copper deposited = $\frac{final \ mass - initial \ mass}{A_r \ of \ Cu}$

$$=\frac{52.542-52.243}{63.5}=0.0047087\approx4.71\times10^{-3}\text{ mol}$$

Since, $Cu^{2+} + 2e^{-} \rightarrow Cu$

 \therefore moles of electrons required = 4.71 \times 10⁻³ \times 2 = 9.42 \times 10⁻³

Amount of charge passed, Q = it

$$= 0.5 \times (30 \times 60) = 900 \text{ C}$$

Number of electrons passed = $\frac{Q}{e} = \frac{900}{1.6 \times 10^{-19}} = 5.625 \times 10^{21}$

 $\therefore L \frac{number of electrons passed}{moles of electrons required}$

$$=\frac{5.625\times10^{21}}{9.42\times10^{-3}}=5.97\times10^{23}\text{ mol}^{-1}$$

Compound	Product at anode	Product at cathode
AgF	O ₂	Ag
FeSO ₄	O ₂	H ₂
MgBr ₂	Br ₂	H ₂

11)

 $log[Ag^{+}] = -4.8333$ $[Ag^{+}] = 10^{-4.8333}$ $= 1.47 \times 10^{-5} \text{ mol/dm}^{3}$ (c) (i) K_{sp} = [Ag^{+}]^{2}[SO^{2} \cdot 4], units: mol^{3}/dm^{9}
(ii) Ag₂SO₄ \Rightarrow 2Ag⁺ + SO⁻²₄ $[SO_{4}^{-2}] : [Ag^{+}] = 1 : 2$ $\Rightarrow [SO_{4}^{-2}] = \frac{[Ag^{+}]}{2}$ $\therefore K_{sp} = (1.6 \times 10^{-2})^{2} \times (\frac{1.6 \times 10^{-2}}{2})$ $= 2.048 \times 10^{-6} \approx 2.05 \times 10^{-6} \text{ mol}^{3}/\text{dm}^{9}$

- (d) Solubility of silver Halides in NH₃(aq) decreases down the group/ also,
 AgCl is white, AgBr has a cream colour, and Agl is yellow in colour.
 This information can be used to distinguish between solutions of the
 halide ions Cl⁻, br⁻ and l⁻
- (e) Solubility decreases down the group, as the cationic size increases and lattice energy decreases. The hydration energy of the cation also decreases. The decrease in hydration energy is more than the lattice energy therefore H Δ H_{solution} becomes more endothermic.

I am Sorry !!!!!

(ii)
$$\operatorname{Cr}^{3+} + e^{-} \rightleftharpoons \operatorname{Cr}^{2+} (E^{\ominus} = -0.41 \, \mathrm{V})$$

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightleftharpoons 2Cr^{3+} + 7H_2O (E^{\ominus} = + 1.33)$$

∴
$$E_{cell}^{\ominus} = 1.33 - (-0.41) = 1.74 \text{ V}$$

equation: $Cr_2O_7^{2-}$ + 14H⁺ 6Cr²⁺ \rightleftharpoons 8Cr³⁺ + 7H₂O

(iii) The colour of the solution changes from orange to green.

(b)
$$pKa = -\log_{10} (K_a(CH_3CO_2H))$$

= $-\log_{10} (1.79 \times 1=^{-5}) = 4.75$
 $pH = pK_a + \log_{10} \left(\frac{(salt)}{(acid)}\right) \implies \log_{10} \left(\frac{[CH_3CO_2Na]}{[CH_3CO_2H]}\right) = pH - pK_a$
= $5.5 - 4.75 = 0.753$

$$\Rightarrow \left(\frac{[CH_3 CO_2 Na]}{[CH_3 CO_2 H]}\right) = 10^{0.753} = 5.66$$

Let volume of CH₃CO₂H be x and volume of CH₃CO₂Na be y in the 100 cm³

buffar solution

Thus, $\frac{y}{r} = 5.66 \implies y = 5.66x$

Also, $x + y = 100 \implies x + 5.66x = 100 \implies x = 15.0 \text{ cm}^3$

 \therefore y = 100 -x = 100 - 15 = 85 cm³

(c) (i) added HCI:
$$CH_3CO_2Na + HCI \rightarrow CH_3CO_2H + NaCI$$

(ii) added NaOH : $CH_3CO_2H + NaOH \rightarrow CH_3CO_2Na + H_2O$

(d)

13)

- (a) A: Voltmeter
 - **B:** Platinum
 - C: 1 mol / dm² HCl
 - D: Lead

(b) (i)

Electrode	Place one tick only in	
potential / V	this column	
- 0.17		
- 0.13		
- 0.9		
0.00		

Explanation: $Pb^{2+}(aq) + 2e^{-} \Rightarrow Pb(s)$. As $[Pb^{2+}]$ decreases from 1 mol/dm³, the equilibrium shifts towards the left hand side and Pb^{2+} is less likely to be reduced.

(ii) $K_{sp} = [Pb^{2+}][Cl^{-}]^{2}$

(iii) Given that, $[PbCl_2] = 3.5 \times 10^{-2} \text{ mol/dm}^3$

:
$$[Pb^{2+}] = 3.5 \times 10^{-2} \text{ mol/dm}^3$$
, $[Cl-] = 7 \times 10^{-2} \text{ mol/dm}^3$

 $K_{sp} = [Pb^{2+}][Cl^{-}]^{2}$

= $(3.5 \times 10^{-2}) (7 \times 10^{-2})^2 = 1.715 \times 10^{-4} \text{ mol/dm}^3$.

(c) (i) E^{\bigcirc} Pb²⁺Pb = - 0.13V and E^{\bigcirc} (Sn²⁺/Sn) = - 0.14V

Since the two electrode potentials are very close, therefore the behavior of PbCl₂ and SnCl₂ towards reducing agents is very similar.

However, $E^{\ominus}(Sn^{4+}/Sn^{2+}) = 0.15V$ and $E^{\ominus}(Pb^{4+}/Pb^{2+}) = 1.69V$.

This means that Sn²⁺ is easily oxidized to Sn⁴⁺ but Pb²⁺ is not easily

oxidized to Pb⁴⁺.

(ii) the reduction of PbCl₂: PbCl₂ + Zn \rightarrow Pb + ZnCl₂.

The oxidation of SnCl₂: Sn²⁺ + Br₂ \rightarrow Sn⁴⁺ + 2Br⁻.

(d) (i) $Pb^{2+}(g) + 2Cl^{-}(g) \rightarrow PbCl_{2}(s)$

(ii) $\Delta H_f = \Delta H_{at} + E(CI - CI) + 1^{st} IE(Pb) + 2^{nd} IE(Pb) + 2 \times E_A (CI) + LE$

LE = - 2264 KJ/mol

(iii) Lattice energy of PbCl2 would be greater than the lattice energy of PbBr2

as the chloride ion has a smaller ionic radius than the bromide ion.

I am Sorry !!!!!

DR. ASHAR RANA M.B.B.S / MS. CHEMISTRY

- · Founder & CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE & EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

Address: 210-Old Brompton Road, London SW5 OBS, UK