Equilibria

Question Paper 5

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Equilibria
Sub-Topic	
Paper Type	Theory
Booklet	Question Paper 5

Time Allowed:	64 minutes
Score:	$/ 53$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	777.5%	70%	62.5%	57.5%	45%	$<45 \%$

1 Concern over the ever-increasing use of fossil fuels has led to many suggestions for alternative sources of energy. One of these, suggested by Professor George Olah, winner of a Nobel Prize in chemistry, is to use methanol, $\mathrm{CH}_{3} \mathrm{OH}$, which can be obtained in a number of different ways.

Methanol could be used instead of petrol in a conventional internal combustion engine or used to produce electricity in a fuel cell.
(a) Construct a balanced equation for the complete combustion of methanol.

When hydrocarbon fuels are completely burned in an internal combustion engine, several toxic pollutants may be formed.
(b) State two toxic pollutants that can be produced after complete combustion of a hydrocarbon fuel in an internal combustion engine.
\qquad
\qquad
Methanol may be manufactured catalytically from synthesis gas, a mixture of $\mathrm{CO}, \mathrm{CO}_{2}$ and H_{2}. The CO is reacted with H_{2} to form methanol, $\mathrm{CH}_{3} \mathrm{OH}$.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \quad \Delta H=-91 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(c) From your understanding of Le Chatelier's principle, state two conditions that could be used in order to produce a high yield of methanol.

In each case, explain why the yield would increase.
condition 1
explanation \qquad
\qquad
condition 2 \qquad explanation \qquad
\qquad

Carbon monoxide, which can be used to make methanol, may be formed by reacting carbon dioxide with hydrogen.

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad K_{c}=1.44 \text { at } 1200 \mathrm{~K}
$$

(d) (i) It has been suggested that, on a large scale, this reaction could be helpful to the environment.

Explain, with reasons, why this would be the case.
\qquad
\qquad
(ii) A mixture containing 0.50 mol of $\mathrm{CO}_{2}, 0.50 \mathrm{~mol}$ of $\mathrm{H}_{2}, 0.20 \mathrm{~mol}$ of CO and 0.20 mol of $\mathrm{H}_{2} \mathrm{O}$ was placed in a $1.0 \mathrm{dm}^{3^{2}}$ flask and allowed to come to equilibrium at 1200 K .

Calculate the amount, in moles, of each substance present in the equilibrium mixture at 1200 K .

	$\mathrm{CO}_{2}+\mathrm{H}_{2}$	\rightleftharpoons	CO	+	${ }_{2} \mathrm{O}$
initial moles	0.50		0.50		0.20

2 (a) Explain what is meant by the Bronsted-Lowry theory of acids and bases.
\qquad
\qquad
\qquad
(b) The K_{a} values for some organic acids are listed below.

acid	$K_{a} / \mathrm{mol} \mathrm{dm}^{-3}$
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	1.7×10^{-5}
$\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{H}$	1.3×10^{-3}
$\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{H}$	5.0×10^{-2}

(i) Explain the trend in K_{a} values in terms of the structures of these acids.
\qquad
\qquad
\qquad
\qquad
(ii) Calculate the pH of a $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of $\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{H}$.

$$
\mathrm{pH}=
$$

(iii) Use the following axes to sketch the titration curve you would obtain when $20 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ is added gradually to $10 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{H}$.

(c) (i) Write suitable equations to show how a mixture of ethanoic acid, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$, and sodium ethanoate acts as a buffer solution to control the pH when either an acid or an alkali is added.
\qquad
\qquad
(ii) Calculate the pH of a buffer solution containing $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid and $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium ethanoate.

\qquad

3 When hydrocarbons such as petrol or paraffin wax are burned in an excess of air in a laboratory, carbon dioxide and water are the only products.
When petrol is burned in a car engine, nitrogen monoxide, NO , is also formed.
(a) Explain how NO is formed in an internal combustion engine but not formed when a small sample of petrol is burnt in an evaporating basin.
\qquad
\qquad
\qquad
The engines of modern motor cars have exhaust systems which are fitted with catalytic converters in order to reduce atmospheric pollution from substances such as NO.
(b) (i) State three more pollutants, other than CO_{2} and $\mathrm{H}_{2} \mathrm{O}$, that are present in the exhaust gases of a car engine.
\qquad and
(ii) What is the active material present in the catalytic converter?
(iii) Write one balanced equation to show how NO is removed from the exhaust gases of a car engine by a catalytic converter.
\qquad

NO is also formed when nitrosyl chloride, NOCl, dissociates according to the following equation.

$$
2 \mathrm{NOCl}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

Different amounts of the three gases were placed in a closed container and allowed to come to equilibrium at $230^{\circ} \mathrm{C}$. The experiment was repeated at $465^{\circ} \mathrm{C}$.

The equilibrium concentrations of the three gases at each temperature are given in the table below.

	concentration $/ \mathrm{mol} \mathrm{dm}^{-3}$		
temperature $/{ }^{\circ} \mathrm{C}$	$\mathrm{NOC} l$	NO	Cl_{2}
230	2.33×10^{-3}	1.46×10^{-3}	1.15×10^{-2}
465	3.68×10^{-4}	7.63×10^{-3}	2.14×10^{-4}

(c) (i) Write the expression for the equilibrium constant, K_{c}, for this reaction. Give the units.
(ii) Calculate the value of K_{c} at each of the temperatures given.
$230^{\circ} \mathrm{C}$
$465^{\circ} \mathrm{C}$
(iii) Is the forward reaction endothermic or exothermic? Explain your answer.
\qquad
\qquad
(d) The temperature of the equilibrium was then altered so that the equilibrium concentrations of NOCl and NO were the same as each other.

What will be the effect on the equilibrium concentration of NOCl when the following changes are carried out on this new equilibrium? In each case, explain your answer.
(i) The pressure of the system is halved at constant temperature.
\qquad
\qquad
(ii) A mixture of $\mathrm{NOCl}(\mathrm{g})$ and $\mathrm{NO}(\mathrm{g})$ containing equal numbers of moles of each gas is introduced into the container at constant temperature.
\qquad
\qquad
[Total: 15]

4 Alcohols and esters are important organic compounds which are widely used as solvents.
Esters such as ethyl ethanoate can be formed by reacting carboxylic acids with alcohols.

$$
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}
$$

This reaction is an example of a dynamic equilibrium.
(a) Explain what is meant by the term dynamic equilibrium.
\qquad
\qquad
(b) Write the expression for the equilibrium constant for this reaction, K_{c}.
(c) For this equilibrium, the value of K_{c} is 4.0 at 298 K .

A mixture containing 0.5 mol of ethanoic acid, 0.5 mol ethanol, 0.1 mol ethyl ethanoate and 0.1 mol water was set up and allowed to come to equilibrium at 298 K . The final volume of solution was Vdm^{3}.

Calculate the amount, in moles, of each substance present at equilibrium.

Alcohols may be classified into primary, secondary and tertiary. Some reactions are common to all three types of alcohol. In other cases, the same reagent gives different products depending on the nature of the alcohol.
(d) In the empty squares below give the structural formula of the organic compound formed in each of the reactions indicated.

If no reaction occurs, write 'no reaction' in the space.
reagent(s) and
conditions
red phosphorus and
iodine
heat under reflux
concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$
heat
Cr $\mathrm{Cr}_{2}^{2-/ \mathrm{H}^{+}}$
heat under reflux
[Total: 11]

