

CHEMISTRY ONLINE

- TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

CHEMISTRY

 PHYSICAL CHEMISTRYLevel \& Board
CIE (A-LEVEL)

TOPIC:

PAPER TYPE:1075

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

Equilibria-1

1)

(a) A weak acid dissociates incompletely in water to give H^{+}

$$
\begin{aligned}
& \mathrm{HA}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \\
& \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq}) \rightleftharpoons \mathrm{H}+(\mathrm{aq})+\mathrm{H}+(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})
\end{aligned}
$$

(b) (i) $\mathrm{C}_{\mathrm{i}} /$ mold $\mathrm{m}^{-3} \quad 0.100$
$\mathrm{C}_{\text {eqm }} / \mathrm{mold} \mathrm{m}^{-3} 0.100-\mathrm{x} \quad \mathrm{X} \quad \mathrm{X}$

$$
\begin{aligned}
& k_{C} \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]} \\
& 1.74 \times 10^{-5}=\frac{x^{2}}{0.100-x}
\end{aligned}
$$

Assume $x \ll 0.100$ since $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ is a weak acid.

$$
\begin{aligned}
& 1.74 \times 10^{-5}=\frac{x^{2}}{0.100} \\
& x=1.319 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3} \\
& \mathrm{pH}=-\lg \left[\mathrm{H}^{+}\right]=1.88
\end{aligned}
$$

(c) $n_{H C l} 0.200 \times \frac{14}{1000}=2.8 \times 10^{-3} \mathrm{~mol}$

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{N}}=2.8 \times 10^{-3} \mathrm{~mol} \\
& \mathrm{~m}_{\mathrm{N}}=2.8 \times 10^{-3} \times 14=3.92 \times 10^{-2} \mathrm{~g} \\
& \% \mathrm{~N}=\frac{3.92 \times 10^{-2}}{0.100} \times 100=39.2 \%
\end{aligned}
$$

(a) A buffer is usually a mixture of a weak acid and its salt or a weak base and its salt, and it is able to resist pH changes when a little acid or base is added to it.
(b) $\mathrm{OH}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{O}$

When OH - it is removed by reading with the $\mathrm{H}+$ in the system.
Hence, the pH does not increase.
(c) $\quad K_{a} \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2}\right]}$

$$
\begin{aligned}
& 7.90 \times 10^{-7}=\left[\mathrm{H}^{+}\right] \cdot \frac{20}{1} \\
& {\left[\mathrm{H}^{+}\right]=3.95 \times 10^{-8} \mathrm{~mol} \mathrm{dm}^{-3}} \\
& \therefore \mathrm{pH}=-\lg \left[\mathrm{H}^{+}\right]=7.40
\end{aligned}
$$

(d) (i) $\mathrm{CO}_{2}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{BaCO}_{3}+\mathrm{H}_{2} \mathrm{O}$
(ii) Mr of $\mathrm{BaCO}_{3}=137+12+3 \times 16=197$

$$
\mathrm{n}_{\text {BacO3 }}=\frac{0.600}{197}=3.05 \times 10^{-3} \mathrm{~mol}
$$

Hence, total amount of $\mathrm{CO} 2+\mathrm{HCO}_{3}^{-}=3.05=10^{-3} \mathrm{~mol}$.

$$
\begin{aligned}
& \frac{\left[\mathrm{HCO}_{2}^{-}\right]}{\left[\mathrm{CO}_{2}\right]}=\frac{20}{1} \\
& {\left[\mathrm{HCO}_{3}^{-}\right]=20\left[\mathrm{CO}_{2}\right]} \\
& {\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{2}\right]=21\left[\mathrm{CO}_{2}\right]} \\
& \frac{3.05 \times 10^{-3}}{\frac{100}{100}}=21\left[\mathrm{CO}_{2}\right] \\
& {\left[\mathrm{CO}_{2}\right]=1.45 \times 10^{-3} \mathrm{~mol} \mathrm{~d}}
\end{aligned}
$$

3)

(b) (i) $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Sr}^{2+}\right]\left[\mathrm{IO}_{3}^{-}\right]^{2} \mathrm{~mol}^{3} \mathrm{dm}^{-9}$
(ii) Let $\left[\mathrm{Sr}^{2+}\right]=\mathrm{x}$.

$$
\text { Then }\left[\mathrm{IO}_{3}^{-}\right]=2 x
$$

$$
X(2 x)^{2}=1.1 \times 10^{-9}
$$

$$
X=6.50 \times 10-4 \mathrm{~mol} \mathrm{dm}^{-3}
$$

4)

(b) (i) $\mathrm{HF}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=0.08 \times 0.1} \\
& =8 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \\
& \mathrm{pH}=-\lg \left[\mathrm{H}^{+}\right]=2.1
\end{aligned}
$$

(ii) The dissociation of HF involves breaking the $\mathrm{H}-\mathrm{F}$ bond. This process is highly endothermic as indicated by the high bond energy.
5)
(a) (i) $\mathrm{pK}_{\mathrm{a}}=-\lg \mathrm{K}_{\mathrm{a}}$
(ii) for a weak acid, $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$

$$
K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}
$$

(iii) $K_{a}=10^{-2.57}$

$$
=2.69 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}
$$

(b) (i) $\mathrm{FCH}_{2} \mathrm{CO}_{2} \mathrm{H}$
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
(ii) The pressure of electronegative F and Cl withdraws negative charge away from $-\mathrm{CO}_{2}^{-}$by inductive effective. This spreads the charge and stabilizes the anion. Hence, the acids $\mathrm{FCH}_{2} \mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{ClCH}_{2} \mathrm{H}$ are stronger. F is more electronegative than Cl . Hence, the stabilizing effect is greater and $\mathrm{FCH}_{2} \mathrm{CO}_{2} \mathrm{H}$ is more acidic than $\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{H}$.
6)
(b) (i) $K_{p}=-\frac{P_{N_{2} O_{3}}^{2}}{P_{N_{2} O_{3}}^{2} P_{N O}^{2}}$
(ii) $K_{c}=\frac{0.25^{2}}{0.75 \times 1.5^{2}}=0.0370 \mathrm{~atm}^{-1}$
(c) (i) According to Le Chateller's principle, when temperature increase, the position of equilibrium shifts to the left whereby the excess heat is removed
since the backward reaction is endothermic.
(ii) When pressure is increased, according to Le Chatelier's principle, the position of equilibrium shifts to the right where there is a reduction in the number of gaseous particles. This helps to reduce the increased pressure.

7)

(a) The rate of forward reaction equals the rate of backward reaction.
(b) $K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2 \mathrm{H}}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}$
(c) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$

Initial moles
Let x be the number of moles of reactants used and that of products produced equilibrium moles $(0.5-x) \quad(0.5-x) \quad(0.1+x) \quad(0.1+x)$ equilibrium
concentration / $\frac{(0.5-x)}{V} \quad \frac{(0.5-x)}{V} \quad \frac{(0.1-x)}{V} \quad \frac{(0.1-x)}{V}$
mole dm^{-3}

$$
\begin{aligned}
& K_{c}=\frac{\left(\frac{(0.1-x)}{V}\right)\left(\frac{(0.1-x)}{V}\right)}{\frac{(0.5-x)}{V} \frac{(0.5-x)}{V}} \\
& 4=\frac{(0.1+x)^{2}}{(0.5+x)^{2}} \\
& (0.5-x)^{2} 4=(0.1+x)^{2} \\
& 2(0.5-x)=(0.1+x) \\
& 1-2 x=0.1+x \\
& x=0.3 \\
& \therefore \mathrm{n}\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)=\mathrm{n}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)=0.5-0.3=0.2 \\
& \mathrm{n}\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)=\mathrm{n}(\mathrm{H} 2 \mathrm{O})=0.1+0.3=0.4
\end{aligned}
$$

8)

(i) $K_{a}=\frac{\left[\mathrm{RCO}_{2}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{RCO}_{2} \mathrm{H}\right]}$
(i) $\mathrm{pK}_{\mathrm{a}}=-\log 10 \mathrm{~K}_{\mathrm{a}}$
(b) (i) Acid strength increases down the table. As the number of chlorine atoms increase, electron with - drawing effect increases making anjon more stable.
(ii) Chlorine atom is further away from $\mathrm{O}-\mathrm{H}$ in number 4 , so it has less influence upon -OH , making acid to be weaker than in number 2 .
(iii) $\mathrm{pH}=\frac{1}{2}\left(\mathrm{pK}_{\mathrm{a}}-\log _{10}[\right.$ Acid $\left.]\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(4.9-\log _{10} 0.01\right. \\
& =\frac{1}{2}(4.9+2)=3.45 \approx 3.5
\end{aligned}
$$

9)

(a) $2 \mathrm{MnO}_{4}^{-} 5 \mathrm{H}_{2} \mathrm{O}_{2}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}^{2} \mathrm{O}+5 \mathrm{O}_{2}$
(b) $E_{\text {cell }}^{\ominus}=1.52-0.68=+3 \times 0.84 \mathrm{~V}$
(c) (i) Colour changes from purple to colourless

$$
\begin{aligned}
& \mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)=\frac{5}{2} \times 3 \times 10^{-4} \text { in } 25 \mathrm{~cm}^{3} \\
& \therefore\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=7.5 \times \frac{1000}{25}=3.0 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

(a) High temperature and pressure provide enough energy to break $\mathrm{N} \equiv \mathrm{N}$ bond.
(b) (i) $\mathrm{C}_{1} \mathrm{CO}_{1}$ hydrocarbons and SO_{2} and $\mathrm{H}_{2} \mathrm{~S}_{1} \mathrm{NO}_{\mathrm{x}}$
(ii) Pt or Pd and Rh
(iii) $2 \mathrm{NO}+2 \mathrm{CO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2}$ or $2 \mathrm{NO}+\mathrm{C} \rightarrow \mathrm{CO}_{2}+\mathrm{N}_{2}$
(c) (i) $K c=\frac{\left[\mathrm{NO}^{2}\left[\mathrm{Cl}_{2}\right]\right.}{[\mathrm{NOCl}]^{2}}, \quad$ unit: $\mathrm{mol} \mathrm{dm}{ }^{-3}$
(ii) $230^{\circ} \mathrm{C}: K c=\frac{\left(1.46 \times 10^{2}\right)^{2} \times\left(1.15 \times 10^{-2}\right)}{\left(2.33 \times 10^{-3}\right)^{2}}=4.5 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
$465^{\circ} \mathrm{C}: K c=\frac{\left(7.63 \times 10^{-3}\right)^{2} \times\left(2.14 \times 10^{-4}\right)}{\left(3.68 \times 10^{-4}\right)^{2}}=9.2 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
(iii) Endothermic because KC increases with temperature.
(d) (i) Equilibrium moves to R.H.S. because more moles on R.H.S.
(ii) No change to equilibrium position.

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR

 CHEMISTRY ONLINE TUITION- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

Address: 210-Old Brompton Road, London SW5 OBS, UK

