Equilibria Mark Scheme 1

Level		International A Level				
Subject			Chemistry			
Exam Boar	rd		CIE			
Торіс			Equilibria			
Sub-Topic						
Paper Type	e		Theory			
Booklet			Mark Scher	ne 1		
Time Allowed: Score: Percentage:		75 minu /62 /100	tes TRY			
Grade Boundaries:						
A*	А	В	С	D	E	U
>85%	777 5%	70%	62.5%	57 5%	45%	<45%

1 (a (i)	$2PbS + 3O_2 \rightarrow 2PbO + 2SO_2$ reagents and formulae balancing	[1] [1]	[2]
(ii)	S (is oxidised) –2 to (+)4 O (is reduced) 0 to –2	[1] [1]	[2]
(b) (i)	T = 400 – 600 °C (chosen as a compromise because) High T increases rate ora High T decreases yield/moves eqm left/makes less SO₃ as forward reaction exothermic ora	[1] [1] [1]	[3]
(ii)	High pressure increases rate as collision frequency increases ora	[1]	
	High pressure moves eqm right/favours forward reaction as more moles on	[1]	
	Uneconomic to use high pressures/high yield at low pressure	[1]	[3]
(c) (i)	Reaction (too) exothermic/acid spray produced	[1]	[1]
(ii)	$SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$ $H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$	[1] [1]	[2]
(d)	Preservative owtte antimicrobial/antioxidant/reducing agent	[1] [1]	[2]
(e) (i)	$12.35 \times 0.01/1000 = 1.235 \times 10^{-4}$	[1]	[1]
(ii)	$1.235 \times 10^{-4} \times 1000/50 = 2.47 \times 10^{-3}$	[1]	[1]
(iii)	$2.47 \times 10^{-3} \times 64.1 = 0.158327 \text{ g} = 158 (3 \text{ sf only})$	[1]	[1]
			[18]
1	1	l	I

<u>CHEMISTRY ONLINE</u> — TUITION —

2 (a) (i) a solution that resists/minimises a change in its pH or helps maintain its pH..... [2] (NOT any of: "maintains pH"; "keeps pH constant"; "no change in pH")when small amounts of acid/H⁺ or base/OH⁻ are added (both acid and base are needed)

(ii)
$$HCO_3^-$$
 reacts with H^+ ions as follows:
 $HCO3^- + H^+ \longrightarrow H_2CO_3 (or H_2O + CO_2)$
and with OH^- ions thus:
 $HCO_3^- + OH^- \longrightarrow CO_3^{2-} + H_2O$
[2]

(the equation arrows can be equilibrium arrows, as long as HCO₃⁻ is on the left)

(iii)
$$(pK_a = -log(K_a) = 7.21)$$
 [2]

 $pH = pK_a + log([base]/[acid] = 7.21 + log(0.5/0.3)$ = 7.43 (7.4)

(b) (i)
$$K_{sp} = [Ag^+]^3 [PO_4^{3-}]$$
 and units: mol⁴dm⁻¹² [1]
(ii) call $[PO_4^{3-}] = x$, then $[Ag^+] = 3x$, and $K_{sp} = 27x^4$ [3]

$$x = (K_{co}/27)^{1/4} = (1.25 \times 10^{-20}/27)^{1/4} = 4.64 \times 10^{-6} \text{ mol dm}^{-3}$$

$$[Ag^+] = 3x = 1.39 \times 10^{-5} \text{ (mol dm}^{-3})$$
 (allow 1.4×10^{-5})

(c)
$$H_3PO_3 + 2Fe^{3+} + H_2O \longrightarrow H_3PO_4 + 2Fe^{2+} + 2H^+$$
 [2]

or
$$3H_3PO_3 + 3H_2O + 2Fe^{3+} \longrightarrow 3H_3PO_4 + 6H^+ + 2Fe$$

3 (a (i)	(reaction between atmospheric N_2 and O_2) due to lightning / biological processes or bacteria in soil	(1)	
	AND in car engines/power stations/metal refining/furnaces		[1]
(ii)	$2NO_2 + H_2O \rightarrow HNO_2 + HNO_3 OR$ $2NO_2 + H_2O + 1/2O_2 \rightarrow 2HNO_3 OR$ $3NO_2 + H_2O \rightarrow 2HNO_3 + NO$	(1)	[1]
(iii)	$SO_{2} + NO_{2} \rightarrow SO_{2} + NO_{2}$	(1)	[]
(11)		(')	
	$NO + 1/2O_2 \rightarrow NO_2$	(1)	
	$SO_3 + H_2O \rightarrow H_2SO_4$	(1)	[3]
(b) (i)	$K_{\rm p} = \rm pN_2O_4/(\rm pNO_2)^2$	(1)	[1]
(ii)	moles of $NO_2 = 0.32$	(1)	[1]
(iii)	$x(N_2O_4) = 1.84/2.16 = 0.85$	(1)	
	x(NO ₂) = 0.32/2.16 = 0.15 ecf from (b)(ii)	(1)	[2]
(iv)	pN ₂ O ₄ = 0.85 × 140 = 119 (kPa)	(1)	
	pNO ₂ = 0.15 × 140 = 21 (kPa) ecf from (b)(iii)	(1)	[2]
(v)	$K_p = 119/21^2 = 0.270 \text{ kPa}^{-1}$ ecf from (b)(i) and (b)(iv)	(2)	
		Total	13

<u>CHEMISTRY ONLINE</u> — TUITION —

Question	Scheme	Marks	т
4 (a)	$4\text{FeS}_2 + 11\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$	1 1	[2]
(b) (i)	Very exothermic/gets very hot OR creates (acid/H ₂ SO ₄) spray/mist/fog/fumes	1	1
(ii)	$SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$	1	
	$H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$	1	[2]
(c) (i)	Š M1 SO ₂ correct M2 SO ₃ correct	1+1	[2]
(ii)	115–120° bent / non-linear 120° trigonal planar	1 1	[2]
(d) (i)	Advantage = higher rate Greater KE/energy/speed/collision frequency/proportion of successful collisions/more particles with E>Ea	1 1	
	Disadvantage – reduced yield/less product	1	
	(Forward reaction) exothermic AND (hence in accordance with LCP) equilibrium/reaction shifts left (to counteract inc T) ora	1	[4]
(ii)	$K_{p} = \frac{pSO_{3}^{2}}{pSO_{2}^{2} \times pO_{2}}$	1	[1]

Question	Scheme		Marks	т
(iii)	$2SO_{2}(g) + O_{2}(g) \rightleftharpoons 2SO_{3}(g)$ $2 \qquad 2 \qquad 0$ $(-1.8) \qquad (-0.9)$ $\underline{0.2 \qquad 1.1}$		1	
	$xSO_3 = 1.8/3.1 = 0.581$ $xSO_2 = 0.2/3.1 = 0.065$ $xO_2 = 1.1/3.1 = 0.355$		1	
	$K_{\rm p} = \frac{0.581^2 \times (2 \times 10^5)^2}{0.065^2 \times (2 \times 10^5)^2 \times 0.355 \times 2}$	$\times 10^5 = 1.13 \times 10^{-3} \text{ Pa}^{-1}$	1+1	[5]
				[19]

