## Equilibria

## Mark Scheme 1

| Level | International A Level |
| :--- | :--- |
| Subject | Chemistry |
| Exam Board | CIE |
| Topic | Equilibria |
| Sub-Topic |  |
| Paper Type | Theory |
| Booklet | Mark Scheme 1 |


| Time Allowed: | 75 minutes |
| :--- | :--- |
| Score: | $/ 62$ |
| Percentage: | $/ 100$ |

Grade Boundaries:

| A* | A | B | C | D | E | U |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $>85 \%$ | $777.5 \%$ | $70 \%$ | $62.5 \%$ | $57.5 \%$ | $45 \%$ | $<45 \%$ |


| 1 (a (i) | $2 \mathrm{PbS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{PbO}+2 \mathrm{SO}_{2}$ <br> reagents and formulae balancing | [1] [1] | [2] |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & S \text { (is oxidised) }-2 \text { to }(+) 4 \\ & O \text { (is reduced) } 0 \text { to }-2 \end{aligned}$ | $\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$ | [2] |
| (b) (i) | $\mathrm{T}=400-600^{\circ} \mathrm{C}$ (chosen as a compromise because) <br> High T increases rate ora <br> High T decreases yield/moves eqm left/makes less $\mathrm{SO}_{3}$ as forward reaction exothermic ora | [1] [1] [1] | [3] |
| (ii) | High pressure increases rate as collision frequency increases ora <br> High pressure moves eqm right/favours forward reaction as more moles on left ora Uneconomic to use high pressures/high yield at low pressure | [1] <br> [1] <br> [1] | [3] |
| (c) (i) | Reaction (too) exothermic/acid spray produced | [1] | [1] |
| (ii) | $\begin{aligned} & \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7} \\ & \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4} \end{aligned}$ | $\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$ | [2] |
| (d) | Preservative owtte antimicrobial/antioxidant/reducing agent | $\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$ | [2] |
| (e) (i) | $12.35 \times 0.01 / 1000=1.235 \times 10^{-4}$ | [1] | [1] |
| (ii) | $1.235 \times 10^{-4} \times 1000 / 50=2.47 \times 10^{-3}$ | [1] | [1] |
| (iii) | $2.47 \times 10^{-3} \times 64.1=0.158327 \mathrm{~g}=158$ ( 3 sf only ) | [1] | [1] |
|  |  |  | [18] |

2 (a) (i) a solution that resists/minimises a change in its pH or helps maintain its $\mathrm{pH} . \ldots .$.
(NOT any of: "maintains pH "; "keeps pH constant"; "no change in pH ")
.....when small amounts of acid $/ \mathrm{H}^{+}$or base $/ \mathrm{OH}^{-}$are added (both acid and base are needed)
(ii) $\mathrm{HCO}_{3}{ }^{-}$reacts with $\mathrm{H}^{+}$ions as follows:

$$
\mathrm{HCO}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}\left(\text { or } \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}\right)
$$

and with $\mathrm{OH}^{-}$ions thus:

$$
\mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-} \longrightarrow \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}
$$

(the equation arrows can be equilibrium arrows, as long as $\mathrm{HCO}_{3}^{-}$is on the left)
(iii) $\left(\mathrm{pK}_{\mathrm{a}}=-\log \left(\mathrm{K}_{\mathrm{a}}\right)=7.21\right)$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log ([$ base $] /[$ acid $]=7.21+\log (0.5 / 0.3)$

$$
=7.43(7.4)
$$

(b) (i) $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]^{3}\left[\mathrm{PO}_{4}{ }^{3-}\right]$ and units: $\mathrm{mol}^{4} \mathrm{dm}^{-12}$
(ii) call $\left[\mathrm{PO}_{4}{ }^{3-}\right]=\mathrm{x}$, then $\left[\mathrm{Ag}^{+}\right]=3 \mathrm{x}$, and $\mathrm{K}_{\mathrm{sp}}=27 \mathrm{x}^{4}$
$x=\left(\mathrm{K}_{\mathrm{sp}} / 27\right)^{1 / 4}=\left(1.25 \times 10^{-20} / 27\right)^{1 / 4}=4.64 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{Ag}^{+}\right]=3 \mathrm{x}=1.39 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \quad$ (allow $1.4 \times 10^{-5}$ )
(c) $\quad \mathrm{H}_{3} \mathrm{PO}_{3}+2 \mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O} \quad \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{Fe}^{2+}+2 \mathrm{H}^{+}$

$$
\begin{aligned}
& E_{\theta_{\text {cell }}}=0.77-(-0.28)=(+) 1.05 \mathrm{~V} \\
\text { or } & 3 \mathrm{H}_{3} \mathrm{PO}_{3}+3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Fe}^{3+} \longrightarrow 3 \mathrm{H}_{3} \mathrm{PO}_{4}+6 \mathrm{H}^{+}+2 \mathrm{Fe} \\
& E_{\theta_{\text {cell }}}=-0.04-(-0.28)=(+) 0.24 \mathrm{~V}
\end{aligned}
$$

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
\[
3 \quad \text { (a) }
\] \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
(reaction between atmospheric \(\mathrm{N}_{2}\) and \(\mathrm{O}_{2}\) ) due to lightning/biological processes or bacteria in soil \\
AND in car engines/power stations/metal refining/furnaces
\[
\begin{aligned}
\& 2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{2}+\mathrm{HNO}_{3} \mathrm{OR} \\
\& 2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}+1 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{HNO}_{3} \mathrm{OR} \\
\& 3 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}+\mathrm{NO} \\
\& \mathrm{SO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{SO}_{3}+\mathrm{NO} \\
\& \mathrm{NO}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{NO}_{2} \\
\& \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
(1) \\
(1) \\
(1) \\
(1) \\
(1)
\end{tabular} \& [1]
[1]

$[3]$ <br>

\hline | (b) (i) |
| :--- |
| (ii) |
| (iii) |
| (iv) |
| (v) | \& \[

$$
\begin{aligned}
& K_{\mathrm{p}}=\mathrm{pN}_{2} \mathrm{O}_{4} /\left(\mathrm{pNO}_{2}\right)^{2} \\
& \text { moles of } \mathrm{NO}_{2}=0.32 \\
& \mathrm{x}\left(\mathrm{~N}_{2} \mathrm{O}_{4}\right)=1.84 / 2.16=0.85 \\
& \mathrm{x}\left(\mathrm{NO}_{2}\right)=0.32 / 2.16=0.15 \\
& \text { ecf from (b)(ii) } \\
& \mathrm{pN}_{2} \mathrm{O}_{4}=0.85 \times 140=119(\mathrm{kPa}) \\
& \mathrm{pNO}_{2}=0.15 \times 140=21(\mathrm{kPa}) \\
& \text { ecf from }(\mathrm{b})(\text { iii }) \\
& K_{\mathrm{p}}=119 / 21^{2}=0.270 \mathrm{kPa}^{-1} \\
& \text { ecf from }(\mathrm{b})(\mathrm{i}) \text { and }(\mathrm{b})(\mathrm{iv})
\end{aligned}
$$

\] \& | (1) |
| :--- |
| (1) |
| (1) |
| (1) |
| (1) |
| (1) |
| (2) | \& [1]

[1]
[2]

[2] <br>
\hline \& \& Total \& 13 <br>
\hline
\end{tabular}

| Question | Scheme | Marks | T |
| :---: | :---: | :---: | :---: |
| 4 (a) | $4 \mathrm{FeS}_{2}+11 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{SO}_{2}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | [2] |
| (b) (i) | Very exothermic/gets very hot OR creates (acid $/ \mathrm{H}_{2} \mathrm{SO}_{4}$ ) spray/mist/fog/fumes | 1 | 1 |
| (ii) | $\begin{aligned} & \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7} \\ & \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4} \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | [2] |
| (c) (i) |   <br> $\mathrm{M} 1 \mathrm{SO}_{2}$ correct $\mathrm{M} 2 \mathrm{SO}_{3}$ correct | 1+1 | [2] |
| (ii) | $115-120^{\circ}$ bent / non-linear <br> $120^{\circ}$ trigonal planar | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | [2] |
| (d) (i) | Advantage = higher rate <br> Greater KE/energy / speed/collision frequency/proportion of successful collisions/more particles with E>Ea <br> Disadvantage - reduced yield/less product <br> (Forward reaction) exothermic AND (hence in accordance with LCP) equilibrium/reaction shifts left (to counteract inc T) ora | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | [4] |
| (ii) | $\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{pSO}_{3}^{2}}{\mathrm{pSO}_{2}^{2} \times \mathrm{pO}_{2}}$ | 1 | [1] |


| Question | Scheme | Marks | T |
| :---: | :---: | :---: | :---: |
| (iii) | $\begin{aligned} & 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \\ & 2 \quad 2 \\ & \begin{array}{c} 1.8) \quad(-0.9) \\ (-1.8) \quad\left(\begin{array}{l} 0 \end{array}\right. \\ \underline{0.2} \quad 1.1 \end{array} \\ & \mathrm{xSO}_{3}=1.8 / 3.1=0.581 \\ & \mathrm{xSO}_{2}=0.2 / 3.1=0.065 \\ & \mathrm{XO}_{2}=1.1 / 3.1=0.355 \\ & K_{\mathrm{p}}=\frac{0.581^{2} \times\left(2 \times 10^{5}\right)^{2}}{0.065^{2} \times\left(2 \times 10^{5}\right)^{2} \times 0.355 \times 2 \times 10^{5}}=1.13 \times 10^{-3} \mathrm{~Pa}^{-1} \end{aligned}$ | 1 <br> 1 <br> 1 $1+1$ | [5] |
|  |  |  | [19] |

