Equilibria

Mark Scheme 10

Level International A Level

Subject Chemistry

Exam Board CIE

Topic Equilibria

Sub-Topic

Paper Type Theory

Booklet Mark Scheme 10

Time Allowed: 71 minutes

Score: /59

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	Е	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

- 1 (a) $N_2 + 2O_2 \rightarrow 2NO_2$ (or via NO) or $2NO + O_2 \rightarrow 2NO_2$ [1]
 - (b) (i) catalytic converter **and** passing the exhaust gases over a catalyst/Pt/Rh [1]
 - (ii) $NO_2 + 2CO \rightarrow \frac{1}{2} N_2 + 2CO_2$ or similar Allow $2NO_2 + CH_4 \rightarrow CO_2 + N_2 + 2H_2O$ [1]
 - (c) No, it wouldn't be reduced. Because the reaction in (a) does not presuppose a particular fuel (owtte)
 Allow formed from N₂ and O₂ in air during combustion
 - (d) (i) SO₃ produces acid rain [1]
 - (ii) $NO + \frac{1}{2}O_2 \rightarrow NO_2$ [1]
 - (iii) $K_p = (p_{NO}.p_{SO_3})/(p_{NO_2}.p_{SO_2})$ [1 units: dimensionless/none (don't accept just a blank!)
 - (iv) $K_p = 99.8^2/0.2^2 = 2.5 \times 10^5$ [1]
 - (v) It will shift to the right (owtte) [1] because the reaction is exothermic. NOT just Le Chatelier argument [1]

[Total: 11]

CHEMISTRY ONLINE — THITON —

2	(a	hydrogen bonding		(1)	
		diag: $NH_2CH_2CH_2OH$ $OHCH_2CH_2NH_2$ or NH_2CH (i.e. H-bond from OH group to either OH or NH_2)	I ₂ CH ₂ OHNH ₂ CH ₂ CH ₂ OH	(1	[2]
	(b)	propylamine is more basic than phenylamine because lone pair on N is delocalised over ring in p protonation)	· ·		
		or the propyl group is electron-donating, so the lone	e pair is more available	(1)	[2]
	(c)	HOCH ₂ CH ₂ NH ₂ + H ⁺ \longrightarrow HOCH ₂ CH ₂ NH ₃ ⁺ or HOCH ₂ CH ₂ NH ₂ + HC l \longrightarrow HOCH ₂ CH ₂ NH ₃ or HOCH ₂ CH ₂ NH ₂ + H ₂ O \longrightarrow HOCH ₂ CH ₂ NH (reaction with any acceptable Bronsted acid accept	₃ ⁺ OH [−]		[1]
		(reaction with any acceptable bronsted acid accept	eu)		נין
	(d)	(X is CH ₃ CH ₂ CN		(
		(ii) step 1 is KCN in ethanol, heat step 2 is H ₂ +Ni / Pt or LiAlH ₄ or Na in ethanol	-	(1) (1)	[3]
(e)		ethanolamine: Na or $\operatorname{Cr_2O_7^{2-}/H^+}$ or $\operatorname{MnO_4^-/H^+}$ or $\operatorname{PC} l_3 / \operatorname{PC} l_5 / \operatorname{SOC} l_2$ (1)	effervescence / bubbles production colour turns from orange to greepurple colour disappears steamy fumes		
		phenylamine:			
		$Br_2(aq)$ or HNO_2/H^+ at T<10°C, then phenol in NaOH (1)	decolourises / white ppt formed coloured dye formed (l (1)	[4]

[Total: 12]

- 3 (a (i) Br_2 (ignore solvent, but do not credit $AlCl_3$ or HCl or light) (1)
 - (ii) curly arrow from C=C to Br (1) another one breaking Br-Br bond. (1) correct intermediate cation and Br⁻ produced (not Br^{δ-}) (1)

[max 3]

(b) **B** is NH₂CH₂CH₂NH₂ (1) **C** is NCCH₂CH₂CN (1)

E is ClCOCH₂CH₂COCl(1)

[3]

(Allow (CH₂)₂ or C₂H₄. Allow correct atoms in any order on LHS but order must be correct on RHS)

- (c) reaction II: heat, dilute H⁺(aq) or HC1(aq) or HC1(conc) or H₂SO₄(aq) (1) reaction III: H₂ + Ni (or other named catalyst) or LiA1H₄ or Na in ethanol (1) [2]
- (d) NH₄⁺(1) [1]
- (e) (i) [-NHCH₂CH₂CH₂CH₂NH-COCH₂CH₂CO-] (1) (allow (CH₂)₄ and (CH₂)₂) (not dimer, needs bonds both ends)
 - (ii) HCl(1)
- (f) (i) $[H^+] = 10^{-pH} = 10^{-2.6} = 2.51 \times 10^{-3} \text{ (mol dm}^{-3}\text{) (1)}$
 - (ii) Ka = $[H^+]^2/c$ = 6.31 × 10⁻⁵ (mol dm⁻³) (allow ecf from (i)) (1)

[Total: 13]

[2]

- 4 (a (i) Partition coefficient (PC) is an equilibrium constant representing the distribution of a solute between two solvents.
 or PC = ratio of the concentrations of the solute in the two solvents or PC = [X]_a/[X]_b
 [1]
 - (ii) If 0.4 g has been extracted, 0.1 g remain in the aqueous layer.

the concentration in the hexane layer =
$$\frac{0.4}{20}$$
 = 0.02 g cm⁻³

the concentration in the aqueous layer = $\frac{0.1}{100}$ = 0.001 g cm⁻³

$$K_{pc} = 0.02/0.001 = 20$$
 [1]

(iii) 1^{st} extraction: hexane $x/10 \text{ g cm}^{-3}$ water $(0.50-x)/100 \text{ g cm}^{-3}$

$$K_{pc} = \frac{x/10}{(0.5 - x)/100} = 20$$

hence
$$x/10 = (10 - 20x)/100$$

 $100x = 10(10 - 20x)$ or $100x = 100 - 200x$

$$x = 0.33 g$$
 [1]

 2^{nd} extraction: hexane $y/10 \,\mathrm{g}$ cm⁻³ water $(0.17 - y)/100 \,\mathrm{g}$ cm⁻³

$$K_{pc} = \frac{y/10}{(0.17 - y)/100} = 20$$

hence
$$y/10 = (3.4 - 20y)/100$$

 $100y = 10(3.4 - 20y)$ or $100y = 34 - 200y$

$$y = 0.11 g$$
 [1]

(b)		berries are aqueous media PCBs are insoluble/sparingly soluble in water <i>or</i> more fat-soluble	[1] [1]	
	(ii)	partition coefficient or [fat]/[water] is greater than 1	[1]	[3]
(c)	(i)	4 (four)	[1]	
	(ii)			
		solvent 2		
		starting point x		
		solvent 1		
		correct spot circled correct spot squared	[1] [1]	

[Total: 11]

[3]

[in each case, more than one spot circled or squared negates the mark]

light is absorbed electron is promoted from a lower to a higher level colour observed is the complement of the colour absorbed E = hf any 3 points [3]

(b) $[Cu(H_2O)_6]^{2^+}$ is pale blue $[Cu(NH_3)_4(H_2O)_2]^{2^+}$ is deep / dark blue or purple [1]

(ii) because it has a larger absorbance peak or a larger ε_0 value because λ_{max} is in the visible region (hence more visible light is absorbed) [1]

(a d-orbitals split into two / different levels

5

(c) $K_c = [CuCl_4^{2-}]/([Cu^{2+}][Cl^{-}]^4)$ units are mol⁻⁴ dm¹² [1] + [1]

(ii) $[CuCl_4^{2-}]/[Cu^{2+}] = K_c[Cl^-]^4 = 672$ (no units) [1]

[Total: 12]