## **Equilibria** Mark Scheme 2

| Level                              |           | International A Level  |            |       |     |      |  |
|------------------------------------|-----------|------------------------|------------|-------|-----|------|--|
| Subject                            |           |                        | Chemistry  |       |     |      |  |
| Exam Boa                           | rd        |                        | CIE        |       |     |      |  |
| Торіс                              |           |                        | Equilibria |       |     |      |  |
| Sub-Topic                          |           |                        |            |       |     |      |  |
| Paper Typ                          | e         |                        | Theory     |       |     |      |  |
| Booklet                            |           |                        | Mark Schei | me 2  |     |      |  |
| Time Allov<br>Score:<br>Percentage |           | 65 minu<br>/54<br>/100 | tes<br>TRY |       |     |      |  |
| Grade Bou                          | indaries: |                        |            |       |     |      |  |
| A*                                 | А         | В                      | С          | D     | E   | U    |  |
| >85%                               | 777.5%    | 70%                    | 62.5%      | 57.5% | 45% | <45% |  |

| Que | estion  | Scheme                                                                                                                                                                     | Marks  | Т   |
|-----|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|
| 1   | (a)     | $CH_4 + H_2O \rightarrow CO + 3H_2$                                                                                                                                        |        | [1  |
|     | (b)     | Label on graph indicating catalysed and uncatalysed Ea<br>OR statement Ea catalysed is lower (than Ea uncatalysed) owtte                                                   |        |     |
|     |         | Reference to catalyst creating alternative mechanism / reaction pathway / route                                                                                            | 1      |     |
|     |         | Idea that more molecules have sufficient energy (to react)                                                                                                                 | 1      |     |
|     |         | so greater chance / frequency of <u>successful</u> collisions                                                                                                              | 1      | [4] |
|     | (c)     |                                                                                                                                                                            | 1      |     |
|     |         | angle = 107°<br>shape = (trigonal) pyramid(al)                                                                                                                             | 1<br>1 | [3] |
|     | (d) (i) | Advantage = higher rate<br>Greater Kinetic Energy / speed / collision frequency / proportion of successful collisions                                                      | 1<br>1 |     |
|     |         | Disadvantage – reduced yield / less product / more reactants                                                                                                               | 1      |     |
|     |         | (Forward reaction) <b>exothermic AND</b> (hence in accordance with Le Chatelier's Principle) equilibrium / reaction <b>shifts left</b> (to counteract increasing temp) ora | 1      | [4] |
|     | (ii)    | $K_{\rm p} = \frac{\rm pNH_3^2}{\rm pN_2 \times \rm pH_2^3}$                                                                                                               | 1      | [1] |

| (iii) | 2 	 3 	 0                                                                                                                                                      |     |      |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
|       | $\begin{array}{c} (-0.8) & (-1.6 \times 3/2) \\ \underline{1.2} & \underline{0.6} & 1.60 \end{array}$                                                          | 1   |      |
|       | $xNH_3 = 1.6/3.4 (= 0.471)$<br>$xN_2 = 1.2/3.4 (= 0.353)$<br>$xH_2 = 0.6/3.4 (= 0.176)$                                                                        | 1   |      |
|       | $K_{\rm p} = \frac{0.471^2 \times (2 \times 10^7)^2}{0.353 \times 2 \times 10^7 \times 0.176^3 \times (2 \times 10^7)^3} = 2.88 \times 10^{-13} {\rm Pa}^{-2}$ | 1+1 | [5]  |
|       |                                                                                                                                                                |     | [18] |



| 2 | (a  |      | a base is a proton accept<br>a lone pair donor<br>a weak base is not fully<br>e.g. $NH_3 + H_2O \Rightarrow NH_3$<br>$B + H^+ \Rightarrow BH^+$ or equivalent<br>is necessary | ionised<br>H₄ <sup>+</sup> + OH <sup>−</sup> <b>or</b>                                                  | (1)<br>(1)<br>(1) | [3]   |
|---|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------|-------|
|   | (b) | (    | stated pressure<br>stated temperature<br>named catalyst                                                                                                                       | greater than 1 atm up to 5 atm 400 to 500 $^{\circ}$ C V <sub>2</sub> O <sub>5</sub> /vanadium(V) oxide | (1)<br>(1<br>(1)  |       |
|   |     | (ii) | SO <sub>3</sub> is dissolved in conc<br>and then diluted with want<br>not 'SO <sub>3</sub> dissolved in wa                                                                    |                                                                                                         | (1)               | [4]   |
|   | (c) | (i)  | with concentrated sulf<br>C <i>l</i> CH <sub>2</sub> CH=CHC <i>l</i><br>with ammonia<br>H <sub>2</sub> NCH <sub>2</sub> CH(OH)CH <sub>2</sub> NH <sub>2</sub>                 |                                                                                                         | (1)               |       |
|   |     | (ii) | nucleophilic<br>substitution                                                                                                                                                  |                                                                                                         | (1)<br>(1)        | [4]   |
|   |     |      |                                                                                                                                                                               |                                                                                                         | [Total:           | : 11] |

## <u>CHEMISTRY ONLINE</u> — TUITION —

asherrana@chemistryonlinetuition.com

| 3 | (a  | (i)                                                           | if the condit                                        | if the conditions of a system in equilibrium are changed |          |                    |            |        |                     |     |                      | (1)     |     |
|---|-----|---------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------|--------------------|------------|--------|---------------------|-----|----------------------|---------|-----|
|   |     | the position of equilibrium moves so as to reduce that change |                                                      |                                                          |          |                    |            |        | (1)                 | [2] |                      |         |     |
|   |     | (ii)                                                          | lower tempe                                          | erature                                                  |          |                    |            |        |                     |     |                      | (1)     |     |
|   |     |                                                               | because the                                          | e forward r                                              | eaction  | is exot            | hern       | nic    |                     |     |                      | (1)     |     |
|   |     |                                                               | higher press                                         | sure                                                     |          |                    |            |        |                     |     |                      | (1)     |     |
|   |     |                                                               | because the<br><b>or</b>                             | e forward r                                              | eaction  | shows              | a re       | ductio | on in volu          | ne  |                      |         |     |
|   |     |                                                               | there are fe                                         | wer molec                                                | ules/mo  | oles on            | RHS        | of eq  | quilibrium          |     |                      | (1)     | [4] |
|   | (b) |                                                               |                                                      | CO <sub>2</sub>                                          | +        | 2                  |            | ⇒      | со                  | +   | <sub>2</sub> O       |         |     |
|   |     | init                                                          | ial moles                                            | 0.70                                                     |          | 0.70               |            |        | 0.30                |     | 0.30                 |         |     |
|   |     | equ                                                           | uil. moles                                           | (0.70–x)                                                 |          | (0.70-             | -x)        |        | (0.30+x             | )   | (0.30+x)             | (1)     |     |
|   |     | equ                                                           | uil. concn.                                          | <u>(0.70–x)</u><br>1                                     |          | <u>(0.70-</u><br>1 | <u>–x)</u> |        | <u>(0.30+x</u><br>1 | )   | <u>(0.30+x)</u><br>1 |         |     |
|   |     | K <sub>c</sub>                                                | $= \frac{(0.30+x)^2}{(0.70-x)^2} =$                  | 1.44                                                     |          |                    |            |        |                     |     |                      | (1)     |     |
|   |     | ate                                                           | es x = 0.25<br>equilibrium,<br>$CO_2$ ) = $n(H_2)$ = | = 0.70 – 0.                                              | 25 = 0.4 | 45 mole            | s          |        |                     |     |                      | (1)     |     |
|   |     | $n(CO) = n(H_2O) = 0.3 + 0.25 = 0.55$ moles                   |                                                      |                                                          |          |                    |            |        |                     | (1) | [4]                  |         |     |
|   |     |                                                               |                                                      |                                                          |          |                    |            |        |                     |     |                      | [Total: | 10] |

| 4 | (a (due to the) strong N≡N bond                              |       |                                                                                                     |                   |  |  |
|---|--------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------|-------------------|--|--|
|   | (b)                                                          | (     | Any balanced equation forming a stable nitrogen oxide<br>e.g. $N_2 + O_2 \longrightarrow 2NO$<br>or |                   |  |  |
|   |                                                              |       | $N_2 + 2O_2 \longrightarrow 2NO_2$                                                                  | [1]               |  |  |
|   |                                                              | (ii)  | in lightning                                                                                        | [1]               |  |  |
|   |                                                              |       | in an engine/combustion of fuels (or a specific example)                                            | [1]               |  |  |
|   |                                                              | (iii) | (NO <sub>x</sub> produces) acid rain <i>or</i> forms (photochemical) smog                           | [1]<br><b>[4]</b> |  |  |
|   | (c)                                                          | (ba   | se is a) proton acceptor                                                                            | [1]               |  |  |
|   |                                                              | bas   | icities: ethylamine > $NH_3$ > phenylamine                                                          | [1]               |  |  |
|   | ethylamine (more basic) due to electron donating ethyl group |       |                                                                                                     |                   |  |  |
|   |                                                              | phe   | enylamine (less basic) due to lone pair being d <mark>e</mark> localised into the ring              | [1]<br><b>[4]</b> |  |  |
|   | (d)                                                          | (     | step 1: nucleophilic substitution                                                                   | [1]               |  |  |
|   |                                                              |       | step 2: hydrolysis                                                                                  | [1]               |  |  |
|   |                                                              | (ii)  | step 1: KCN (in ethanol) and reflux                                                                 | [1]               |  |  |
|   |                                                              |       | step 2: H <sub>3</sub> O <sup>+</sup> / aqueous acid <b>and</b> reflux                              | [1]               |  |  |
|   |                                                              | (iii) | T is NH <sub>2</sub> UITION                                                                         |                   |  |  |
|   |                                                              |       |                                                                                                     | [1]               |  |  |
|   |                                                              |       | W is                                                                                                |                   |  |  |
|   |                                                              |       |                                                                                                     |                   |  |  |
|   |                                                              |       |                                                                                                     | [1]<br><b>[6]</b> |  |  |