Equilibria

Mark Scheme 3

Level International A Level

Subject Chemistry

Exam Board CIE

Topic Equilibria

Sub-Topic

Paper Type Theory

Booklet Mark Scheme 3

Time Allowed: 68 minutes

Score: /56

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

1 (a (i)
$$NH_3 + HZ \longrightarrow NH_4^+ + Z^-$$
 [1] $CH_3OH + HZ \longrightarrow CH_3OH_2^+ + Z^-$ [1]

(ii)
$$NH_3 + B^- \longrightarrow NH_2^- + BH$$
 [1] $CH_3OH + B^- \longrightarrow CH_3O^- + BH$ [1]

(ii) in the equilibrium system HZ +
$$H_2O = Z^- + H_3O^+$$
 [1]

addition of acid: reaction moves to the left
$$or H^{+}$$
 combines with Z^{-} and forms HZ [1]

addition of base: the reaction moves to the right
$$or H^+$$
 combines with OH^- and more Z^- formed [1]

(d) (i)
$$[H^+] = \sqrt{(0.5 \times 1.34 \times 10^{-5})} = 2.59 \times 10^{-3} \text{ (mol dm}^{-3})$$
 [1

pH = 2.59/2.6 (min 1 d.p)

(ii)
$$CH_3CH_2CO_2H + NaOH \longrightarrow CH_3CH_2CO_2Na + H_2O$$
 [1]

likewise,
$$n(salt) = 0.03 \text{ mol}$$

[salt] + **0.3** (mol dm⁻³)

(iv) pH =
$$4.87 + \log(0.3/0.2) = 5.04 - 5.05$$
 ecf [

$$f H$$
 is SOC $m l_2$ or PC $m l_5$ $f J$ is NaC $m l$

(or corresponding Br compounds for G, H and J; CH_3CH_2COBr , $SOBr_2$, NaBr)

[4]

[2]

[5 max 4]

ecf

[1]

2	(a $K_c = \frac{[CH_3CH_2R][H_20]}{[CH_3CH_2H][ROH]}$ no units	(1) (1)	[2]
	(b) ($n(NaOH) = \underline{22.5 \times 2.00} = 0.045$	(1)	
	(ii) $n(NaOH) = n(HCl) = 0.005$	(1)	
	(iii) $CH_3CO_2H + NaOH \rightarrow CH_3CO_2Na + H_2O$	(1)	
	(iv) n(NaOH) = 0.045 - 0.005 = 0.04 allow ecf on (i) and/or (ii)	(1)	[4]
	(c) ($n(NaOH)$ and $n(CH_3CO_2H) = 0.04$ $n(CH_3CO_2R)$ and $n(H_2O) = 0.06$	(1) (1)	
	(ii) $K_c = \frac{0.06 \times 0.06}{0.04 \times 0.04} = 2.25$		
	allow ecf on wrong values in (b)(i) allow ecf on wrong expression in (a)	(1)	
	(d) E_a for reaction with ester is high or E_a for reaction with acid is low or		
	reaction with ester is slow or reaction with acid is fast	(1)	[1]
	(e) equilibrium moves to RHS/more ester would be formed	(1)	
	to maintain value of $K_{ m c}$ or to restore system to equilibrium	(1)	[2]

[Total: 12]

(ii) both forward & reverse reactions are going on at the same time, but the concentrations of all species do not change (owtte) or rate of forward = rate of backward reaction [1]

(i) One that can go in either direction.

3

- **(b) (i)** $K_c = [H^+][OH^-]/[H_2O]$
 - (ii) $K_w = [H^+][OH^-]$ [1] rearrangement of equation in (i) gives $K_c[H_2O] = [H^+][OH^-] \& K_w = K_c[H_2O]$ (owtte) or the [H₂O] is contained within K_w [1]
 - (iii) K_w will be higher in hot water **because** reaction is endothermic [1]
- (c) (i) $[OH^-] = 5 \times 10^{-2}$; $[H^+] = (1 \times 10^{-14})/5 \times 10^{-2} = 2 \times 10^{-13}$ pH = $-\log_{10}[H^+] = 12.7$ (correct ans = [2]) ecf [1]
 - (ii) $[NH_4^+] = [OH^-] (= x)$ $x^2 = 1.8 \times 10^{-5} \times 0.05 \implies x (= [OH^-]) = 9.49 \times 10^{-4} \text{ (mol dm}^{-3})$ (correct ans = [2]) [1]
 - (iii) $[H^{+}] = K_{w}/[OH^{-}] = (1 \times 10^{-14})/9.49 \times 10^{-4} = 1.05 \times 10^{-11} (\text{mol dm}^{-3})$ ecf [1]
 - (iv) pH = 11.0ecf [1]

[Total: 12 max 11]

[1]

4 (a (i) Order w.r.t.
$$[CH_3CHO] = 1$$
 [1]
Order w.r.t. $[CH_3OH] = 1$ [1]
Order w.r.t. $[H^{+}] = 1$ [1]

(ii) rate =
$$k[CH_3CHO][CH_3OH][H^{\dagger}]$$
 [1]

(iii) units =
$$\text{mol}^{-2} \text{ dm}^6 \text{ s}^{-1}$$
 [1]

(b)

	[CH ₃ CHO] /mol dm ⁻³	[CH ₃ OH] /mol dm ⁻³	[H ⁺] /mol dm ⁻³	[acetal A] /mol dm ⁻³	[H ₂ O] /mol dm ⁻³
at start	0.20			0.00	
at equilibrium	(0.20 – x)	(0.10 - 2x)	0.05	x	x
at equilibrium	0.175		0.05	0.025	0.025

(i)	3 values in second row		3 x [1]
-----	------------------------	--	---------

(iii)
$$K_c = \{ [acetal \, \textbf{A}] [H_2O] \} / \{ [CH_3CHO] [CH_3OH]^2 \}$$
 [1] units = $mol^{-1}dm^3$ [1]

(iv)
$$K_c = 0.025^2/(0.175 \times 0.05^2) = 1.4(3) \text{ (mol}^{-1} \text{ dm}^3)$$
 [1] [max 9]

[Total: 15]