Equilibria

Mark Scheme 3

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Equilibria
Sub-Topic	
Paper Type	Theory
Booklet	Mark Scheme 3

Time Allowed:

Score:
Percentage:

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	777.5%	70%	62.5%	57.5%	45%	$<45 \%$

1
(a (i) $\mathrm{NH}_{3}+\mathrm{HZ} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{Z}$
$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{HZ} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}_{2}^{+}+\mathrm{Z}^{-}$
(ii) $\mathrm{NH}_{3}+\mathrm{B}^{-} \longrightarrow \mathrm{NH}_{2}^{-}+\mathrm{BH}$
$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{B}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{O}^{-}+\mathrm{BH}$
(b) (i) a reaction that can go in either direction
(ii) of forward = rate of backward reaction or forward/back reactions occurring but concentrations of all species do not change
(c) (i) a solution that resists changes in pH
when small quantities of acid or base/alkali are added
(ii) in the equilibrium system $\mathrm{HZ}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Z}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
addition of acid: reaction moves to the left or H^{+}combines with Z^{-}and forms HZ
addition of base: the reaction moves to the right or H^{+}combines with OH^{-}and more Z^{-}formed
(d) (i) $\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(0.5 \times 1.34 \times 10^{-5}\right)=2.59 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
$\mathrm{pH}=$ 2.59/2.6 ($\min 1$ d.p)
ecf
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Na}+\mathrm{H}_{2} \mathrm{O}$
(iii) n (acid) in $100 \mathrm{~cm}^{3}=0.5 \times 100 / 1000=0.05 \mathrm{~mol}$
n (acid) remaining $=0.05-0.03=0.02 \mathrm{~mol}$
[acid remaining] $=0.2\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
likewise, n (salt) $=0.03 \mathrm{~mol}$
[salt] $\mathbf{+} 0.3\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
(iv) $\mathrm{pH}=4.87+\log (0.3 / 0.2)=\mathbf{5 . 0 4}-\mathbf{5 . 0 5}$
(e) \mathbf{G} is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$

H is SOCl_{2} or PCl_{5}
J is NaCl
(or corresponding Br compounds for \mathbf{G}, \mathbf{H} and $\mathbf{J} ; \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COBr}, \mathrm{SOBr}_{2}, \mathrm{NaBr}$)

2 (a $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{R}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{H}\right][\mathrm{ROH}]}$ no units
(b) $\left(\quad n(\mathrm{NaOH})=\frac{22.5 \times 2.00}{1000}=0.045\right.$
(ii) $n(\mathrm{NaOH})=n(\mathrm{HCl})=0.005$
(iii) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}+\mathrm{H}_{2} \mathrm{O}$
(iv) $n(\mathrm{NaOH})=0.045-0.005=0.04$ allow ecf on (i) and/or (ii)
(c) ($n(\mathrm{NaOH})$ and $n\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)=0.04$ $n\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{R}\right)$ and $n\left(\mathrm{H}_{2} \mathrm{O}\right)=0.06$
(ii) $K_{\mathrm{c}}=\frac{0.06 \times 0.06}{0.04 \times 0.04}=2.25$
allow ecf on wrong values in (b)(i) allow ecf on wrong expression in (a)
(d) E_{a} for reaction with ester is high or E_{a} for reaction with acid is low
or
reaction with ester is slow or reaction with acid is fast
(e) equilibrium moves to RHS/more ester would be formed to maintain value of K_{c} or to restore system to equilibrium
(ii) both forward \& reverse reactions are going on at the same time, but the concentrations of all species do not change (owtte)
or rate of forward = rate of backward reaction
(b) (i) $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{O}\right]$
(ii) $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
rearrangement of equation in (i) gives $\mathrm{K}_{\mathrm{c}}\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$\& $\mathrm{K}_{\mathrm{w}}=\mathrm{K}_{\mathrm{c}}\left[\mathrm{H}_{2} \mathrm{O}\right]$ (owtte) or the $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is contained within K_{w}
(iii) K_{w} will be higher in hot water because reaction is endothermic
(c) (i) $\left[\mathrm{OH}^{-}\right]=5 \times 10^{-2} ;\left[\mathrm{H}^{+}\right]=\left(1 \times 10^{-14}\right) / 5 \times 10^{-2}=2 \times 10^{-13}$
$\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=12.7 \quad$ (correct ans $=[2]$) ecf [1]
(ii) $\left[\mathrm{NH}_{4}^{+}\right]=\left[\mathrm{OH}^{-}\right](=x)$
$x^{2}=1.8 \times 10^{-5} \times 0.05 \Rightarrow x\left(=\left[\mathrm{OH}^{-}\right]\right)=9.49 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \quad$ (correct ans $\left.=[2]\right)[1]$
(iii) $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=\left(1 \times 10^{-14}\right) / 9.49 \times 10^{-4}=1.05 \times \mathbf{1 0}^{-11}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
ecf [1]
(iv) $\mathrm{pH}=11.0$
$4 \quad$ (a (i) Order w.r.t. $\left[\mathrm{CH}_{3} \mathrm{CHO}\right]=1$
Order w.r.t. $\left[\mathrm{CH}_{3} \mathrm{OH}\right]=1$
Order w.r.t. $\left[\mathrm{H}^{+}\right]=1$
(ii) rate $=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{CHO}_{3}\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]\right.$
(iii) units $=\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$
(iv) rate will be $2 \times 4=8$ times as fast as reaction 1 (relative rate $=8$)
(b)

	$\left[\mathrm{CH}_{3} \mathrm{CHO}\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	$\left[\mathrm{CH}_{3} \mathrm{OH}\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	$\left[\mathrm{H}^{+}\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	$[$ acetal A $]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	$\left[\mathrm{H}_{2} \mathrm{O}\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$
at start	0.20			0.00	
at equilibrium	$(0.20-\mathrm{x})$	$\mathbf{(0 . 1 0 - 2 \mathbf { x })}$	$\mathbf{0 . 0 5}$	x	\boldsymbol{x}
at equilibrium	$\mathbf{0 . 1 7 5}$		$\mathbf{0 . 0 5}$	0.025	$\mathbf{0 . 0 2 5}$

(i) 3 values in second row	$3 \times[1]$
(ii) 4 values in third row	$4 \times[1]$
(iii) $\mathrm{K}_{\mathrm{c}}=\left\{[\right.$ acetal A$\left.]\left[\mathrm{H}_{2} \mathrm{O}\right]\right\} /\left\{\left[\mathrm{CH}_{3} \mathrm{CHO}\right]\left[\mathrm{CH}_{3} \mathrm{OH}\right]^{2}\right\}$	$[1]$
units $=\mathrm{mol}^{-1} \mathrm{dm}^{3}$	$[1]$
(iv) $\mathrm{K}_{\mathrm{c}}=0.025^{2} /\left(0.175 \times 0.05^{2}\right)=\mathbf{1 . 4 (3)}\left(\mathrm{mol}^{-1} \mathrm{dm}^{3}\right)$	$[1]$

