Equilibria Mark Scheme 4

Level		International A Level					
Subject		Chemistry					
Exam Boar	d	CIE					
Торіс			Equilibria				
Sub-Topic							
Paper Type	e		Theory				
Booklet		Mark Scheme 4					
Time Allow Score: Percentage	ed: :CHF	64 minut /53 /100	es TRY				
Grade Boundaries:							
A*	А	В	С	D	E	U	
>85%	777.5%	70%	62.5%	57.5%	45%	<45%	

1 (a (i) $C_2H_5NH_2 + HA \rightarrow C_2H_5NH_3^+ + A^-$ (HA can be H_2O , HC*l* etc.) [1] Allow \rightleftharpoons instead of arrow

()

|--|

[1]

- (iii) ethylamine > NH3 due to electron-donating ethyl/alkyl group[1]phenylamine < NH3 due to delocalisation of lone pair over ring</td>[1][2][1][2][1][3][1][4][1][4][1][4][1][5][1][5][1][6][1][6][1][6][1][6][1][6][1][6][1][6][1][6][1][6][1][6][1][6][1][6][1]<tr
- (b) (i) $C_6H_5OH + OH^- \rightarrow C_6H_5O^- + H_2O$ (or with Na⁺/H₂O/A⁻) [1]
 - (ii) pKa of nitrophenol is smaller/K_a is larger because it's a stronger acid/dissociates more than phenol stronger because the anionic charge is spread out moreover the NO₂ group *or* NO₂ [1]
 (iii) pKa = 1.0 [1]
 - (iv) Nitro group increases acidity / electron-withdrawing groups increase acidity

(c) (i) **B** is phenyldiazonium cation, $C_6H_5-N^+\equiv N$

[1]

[1] [5]

(ii)					
	reaction	re	conditions		
	Step 1	NaNO ₂ + HC <i>1</i> or HNO ₂ [1]	T < 10°C [1]		
	Step 2	H₂O / aq	heat/boil/T > 10° (both) [1]		
	Step 3	HNO₃ NB HNO₃(aq) OK for both	dilute (both) [1]		

[4] [5]

[Total: 14]

2	(a)	N_2	+	$3H_2$	≠	$2NH_{3}(1)$)
---	-----	-------	---	--------	---	--------------	---

(b)) temperature between 300 and 550°C (1)					
	correct explanation of effect of temperature on rate of formation of NH_3 or on position of equilibrium (1)					
	catalyst of iron or iron oxide (1)					
	to s	speed up reaction or to reduce $E_a(1)$				
(c)	mai or e or r or a	nufacture of HNO ₃ explosives nylon as a cleaning agent				
	or a	as a refrigerant (1)	[1]			
(d)	ferti	iliser in rivers causes excessive growth of aquatic plants/algae (1)				
	whe	en plants and algae die O_2 is used up/fish or aquatic life die (1)	[2]			
(e)	(CO by incomplete combustion of the hydrocarbon fuel (1)				
		NO by reaction between N_2 and O_2 in the engine (1)				
	(ii)	CO toxic/effect on haemoglobin (1)				
		NO toxic/formation of acid rain (1)	[4]			
(f)	(platinum/Pt – allow palladium/Pd or rhodium/Rh (1)				
	(ii)	$2CO + 2NO \rightarrow 2CO_2 + N_2(1)$	[2]			
			[Total: 14]			

- 3 (a) (A few nanometres (accept 0.5–10 nm) (1)
 - (ii) Graphite/graphene (1)
 - (iii) van der Waals' (1)
 Carbon atoms in the nanotubes are joined by covalent bonds (1)
 (as are the hydrogen atoms in a hydrogen molecule)
 or no dipoles on C or H₂ or the substances are non-polar
 - (b) More hydrogen can be packed into the same space/volume (1)
 - (c) If a system at equilibrium is disturbed, the equilibrium moves in the direction which tends to reduce the disturbance (owtte) (1)

When H_2 is removed the pressure drops and more H_2 is released from that adsorbed (1)

The equilibrium $H_{2adsorbed} \rightleftharpoons H_{2gaseous}(1)$

Equilibrium shifts to the right as pressure drops (1)

[4]

[4]

[1]

[Total: 9]

(a (i) $P_2O_5 + 3H_2O \rightarrow 2H_3PO_4$ (or similar) or $P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$ (1) 4 $SO_2 + H_2O \rightarrow H_2SO_3(1)$ (ii) $2NO_2 + H_2O \rightarrow HNO_2 + HNO_3(1)$ (iii) $2ClO_2 + 2NaOH \rightarrow NaClO_2 + NaClO_3 + H_2O$ or ionic eqn (1) [4] (b) (i) $2CH_4 + C_2H_6 + H_2S + 9O_2 \rightarrow 4CO_2 + SO_2 + 8H_2O_2$ Formulae (1), balanced (1) (ii) (The SO₂ produced) causes acid rain (1) or consequence of acid rain - defoliation etc. - or respiratory problem (iii) 1000 dm³ contains 50 dm³ of H₂S this is 50/24 (= 2.083 moles) (1) M_r (ethanolamine) = 24 + 7 + 14 + 16 = 61 therefore mass = 2.083 × 61 = 127(.1)g (1) (or ecf) (iv) acid-base (1) (v) $\Delta H = \Delta H_f(rhs) - \Delta H_f(lhs)$

(v) $\Delta \Pi = \Delta \Pi_{f}(\Pi S) - \Delta \Pi_{f}(\Pi S)$ = {(3 × 11 - 2 × 242)}{-}{(2 × -21 - 297)} -1 for each { } in which there is an error = -451 + 339 = -112 (kJ mol⁻¹) (2)

[Total: 12]

[8]

- 5 (a) $NH_2CH_2CH_2CH_2NH_2 + HCl \rightarrow NH_2CH_2CH_2CH_2NH_3^+ Cl^-(1)$ $NH_2CH_2CH_2CH_2NH_3^+ Cl^- + HCl \rightarrow Cl^- NH_3 + CH_2CH_2CH_2NH_3^+ Cl^-(1)$ (Deduct 1 only, if Cl^- omitted twice but allow with H^+)
 - (b) starts at 11.3 and finished as 1.6 (1) steep portions at 10 cm³ and 20 cm³ volume added (1) [2]

[2]

