Equilibria Mark Scheme 7

Level			Internation	al A Level		
Subject			Chemistry			
Exam Boa	rd		CIE			
Торіс		Equilibria				
Sub-Topic						
Paper Typ	е		Theory			
Booklet			Mark Scher	me 7		
Time Allow Score: Percentage		74 minut /61 /100	tes TRY			
Grade Bou	indaries:	- TU	JITI	ON		
A*	А	В	С	D	E	U

1 (a)
$$K_c = \frac{[H_2][I_2]}{[HI]^2}$$
 (1) [1]

(b)
$$K_{\rm c} = \frac{0.274 \times 0.274}{(1.47)^2} = 0.035$$
 (1) [1]

(c) At room temperature:

iodine is a solid/solids not K_c expression (1) $[I_2(g)]$ is small/concn too small to be measured (1) it takes longer to reach equilibrium/reaction is slower (1) [2 max] $\Delta H_{\text{reacn}} = \Delta H$ for bonds broken – ΔH for bonds made (1) (d) ((ii) $2H - I \rightarrow H - H + I - I$ 2 x 299 436 151 values (1) $\Delta H = 2 \times 299 - (436 + 151)$ $= + 11 \text{ kJ mol}^{-1}(1)$ [3] An acid that is completely ionised (1) (e) (ii) HI + H₂O \rightarrow H₃O⁺ + I⁻ (iii) Г (1) [3] [Total 10]

CHEMISTRY ONLINE — TUITION —

(ii)
$$(pH = 0.70) \Rightarrow [H^+] = 10^{-0.7} = 0.20 \pmod{dm^{-3}}$$
 [1]

$$\therefore [H_2SO_4] = (0.10 \text{ mol dm}^{-3})$$
 ecf [1]

(iii) (end point is at 34.0 cm³ (
$$\pm$$
 0.5 cm³), so)

amount of
$$H^+$$
 used= 0.2 x 25/1000= 0.0050 molecf from (ii)[1]moles of guanidine= moles of H^+ = 0.0050 mol[guanidine]= 0.005 x 1000/34.0= 0.147 (mol dm⁻³)[1]allow range:0.145 - 0.149ecf in 0.005 or 34.0(iv) M_r = 8.68/0.147= 59 (allow range 58 - 60)ecf from (iii)

(b) (i)
$$\longrightarrow$$
 CaSO₄ + 3 Ca(H₂PO₄)₂ + 2 HF [1]

(ii)
$$M_r$$
 values: ${}_2PO_4)_2 = 234.1$, $H_2SO_4 = 98.0$ [1]

ecf from ratios in equation, and from M_r values

$$\therefore$$
 mass of H₂SO₄ needed = 1.0 x 686/702.3 = **0.98** kg [1]

(correct answer = [3] marks. accurate value is: 0.977 kg. Allow ecf from incorrect M_r or incorrect multipliers)

(c) (i) A solution that resists changes in pH [NOT: results in no pH change]	[1]			
when small amounts of H^+ or OH^- are added				
(ii) pH = $-\log_{10}(6.3 \times 10^{-8}) + \log_{10}(0.1/0.2) = 6.9$				
or $[H^+] = (6.3 \times 10^{-8}) \times 0.2/0.1 = 1.26 \times 10^{-7}$				

$$\therefore$$
 pH = -log₁₀(1.26 x 10⁻⁷) = **6.9**

Total 13

4

[1]

3	(a)		$N_2 + 3H_2 \rightleftharpoons 2NH_3 (1)$	exothermic	[2]	
	(b)		Pr. 5O atm upwards; Temp 400-600°C; catalyst of iron (1 each, conditions stated)			
	(c)		Too high a temp and equilibrium favours LHS, less ammonia at equilibrium (1) Too low a temp, rate too slow/not enough molecules have E _{act} (1)			
	(d)	(i)	$K_{p} = PN PN_{2} x$	(1) (1)		
		(ii)	$K_{\rm p} = \frac{37.}{44.8 \ {\rm x}}$	x 105.6 ³ (1)		
			$= 2.62 \times 10^{-5}$	5 0	[3]	
	(e)		Excess (hence uncontrolled) nitrates leach out of fields into streams, seas (1)			
			Bacteria or algae grow fast/use oxygen/clog up water (1) Balance destroyed/fish unable to live (1) Process called eutrification (1) any 3			

[Total: 13]

4 (a (i	use restriction enzymes <i>or</i> using an enzyme to break (the DNA) down into smaller fragments	1	
(ii	use the polymerase chain reaction <i>or</i> use DNA polymerase to replicate/copy (the sample of DNA)	1	
(iii	 amino acids have different charges due to their side-chain/R group/pH/CO₂⁻ and NH₃⁺ groups DNA fragments have negatively-charge phosphates(or PO₄) or DNA has PO₄³⁻ groups 		
(iv	A piece of leather from an Egyptian tomb A sample of skin from a mummified body	1	
	A fragment of ancient pottery X A piece of wood from a Roman chariot X		
(b) (i) the electron density in the molecule <i>or</i> positions of atoms <i>or</i> interatomic distance/spacing between the atoms	1	
(ii) phosphorus has the most electrons <i>or</i> phosphorus has the highest electron density	1	
(c) (i	 equilibrium constant (for the solution) of a solute between two (immiscible) solvents or ratio of the concentration of the solute in (each of the) two solvents or ratio of the solubility of the solute in (each of the) two solvents 	1	
(ii	$\frac{x/(25/1000)}{(0.0042-x)/(25/1000)}$ x = 0.0252 - 6x x = 0.0036g	1	
	ן די	otal: 10]	

5	(a	(i)	B and D	[1] + [1]	
		(ii)	D	[1]	
				3	
	(b)	hea	t with dilute H⁺(aq) <i>or</i> H₂SO₄(aq)	[1]	
	(c)		K_a larger than that for ethanol because the ethanoate ion/CH ₃ CO ₂ ⁻ is stabilised by charge delocalisation		
			or the O–H bond is weakened due to its proximity to C=O/carbonyl group or the second electronegative/oxygen atom	[1]	
			K_{a} smaller than that for chloroethanoic acid because electron-withdrawing/electronegative chlorine (atom) makes the anion more stable or O–H bond weaker or H more easily lost	[1]	
		(ii)	$[H^*] = \sqrt{([CH_3CO_2H] \times K_a)} = \sqrt{(0.1 \times 1.75 \times 10^{-5})} = 1.32(3) \times 10^{-3} \text{ (mol dm}^{-3})$	[1]	
			pH = -log ₁₀ [H ⁺] = 2.88 (2.9)	[1]	
				4	
	(d)		n(NaOH) at start = 0.1 × 20/1000 = 2.0 × 10 ⁻³ mol n(NaOH) at finish = 1.0 × 10⁻³ mol		
		(ii)	this is in 30 cm^3 of solution, so [NaOH] at finish = $1.0 \times 10^{-3}/0.030 = 3.3(3) \times 10^{-2} \text{ mol dm}^{-3}$ ($\ge 2 \text{ s.f.}$) ecf from (i)	[1]	
	((iii)	$[H^+] = K_w/[OH^-] = 1 \times 10^{-14}/3.33 \times 10^{-2} = 3.0 \times 10^{-13} \text{ mol dm}^{-3}$ pH = $-\log_{10}[H^+] = 12.5(2)$	[1]	
			or pOH = $-\log_{10}(3.33 \times 10^{-2}) = 1.48$ pH = pK _w - pOH = 14 - 1.48 = 12.5(2)	[1]	
	((iv)	pH/vol curve: start at pH 2.88 (2.9) ecf	[1]	
			vertical (over at least 2 pH units) portion at V = 10 cm^3	[1]	
			levels off at pH 12.5 \pm 0.3 ecf	[1]	
		(v)	indicator is thymolphthalein	[1]	
				7	
			n	otal: 151	

[Total: 15]

5