Equilibria Mark Scheme 8

Level			Internation	al A Level		
Subject			Chemistry			
Exam Boar	d		CIE			
Торіс			Equilibria			
Sub-Topic						
Paper Type	e		Theory			
Booklet			Mark Schei	me 8		
Time Allow Score: Percentage	red: ::CHH	62 minu /51 /100	tes TRY			
Grade Boui	ndaries:					
A*	А	В	С	D	E	U
0.50/		700/	C2 F0/		450/	/

2 (a (i) NaOH + HC
$$l \rightarrow NaCl + H_2O$$
 (1)

 $(NH_4)_2SO_4 + 2NaOH \rightarrow 2NH_3 + Na_2SO_4 + 2H_2O$ (1)

allow ionic equations in each case

(ii)
$$n(\text{NaOH}) = n(\text{HC}l) = \frac{39.2 \times 2.00}{1000} = 0.0784$$
 (1)

(iii)
$$n(\text{NaOH}) = n(\text{HC}l) = \frac{29.5 \times 2.00}{1000} = 0.059$$
 (1)

(iv)
$$n(\text{NaOH}) = 0.0784 - 0.059 = 0.0194$$
 (1)

(v)
$$n[(NH_4)_2SO_4] = \frac{0.0194}{2} = 9.7 \times 10^{-3}$$
 (1)

(vi) mass of
$$(NH_4)_2SO_4 = 9.7 \times 10^{-3} \times 132.1 = 1.2814 g$$
 (1)

(vii)% of
$$(NH_4)_2SO_4 = \frac{1.2814 \times 100}{2.96} = 43.30405405 = 43.3$$

give one mark for the correct expression
give one mark for answer given as $43.3 - i.e.$ to 3 sig. fig.(1)
(1)
(1)allow ecf where appropriate[9]

(b) fertiliser in the river causes excessive growth of aquatic plants/algae or algal bloom (1) when plants and algae die O₂ is used up or fish or aquatic life die (1)

(c) manufacture of HNO₃ or explosives or nylon or as a cleaning agent or as a refrigerant not detergent (1) [Total:12]

3	(a)	$K_{\rm P} = \frac{p}{p({\rm NH}_3)^4 p({\rm O}_2)^5}$	(1)
		atmospheres or Pa or kPa allow ecf on incorrect powers	(1) [2]
	(b)) (increasing temperature yield of NO is decreased or reaction moves to LHS forward reaction is exothermic	(1) (1)
		 (ii) decreasing the pressure yield of NO is increased or reaction moves to RHS more moles/molecules of gas on RHS or fewer moles/molecules of gas on LHS 	(1) (1)
	(c)	let ΔH_f^{\bullet} for NO be y kJ mol ⁻¹	
		$4NH_3(g) + 5O_2(g) \implies 4NO(g) + 6H_2O(g)$	
		$\Delta H_{\rm f}^{\circ} 4 \times (-46.0)$ 4y 6 × (-242)	(1)
		$\Delta H^{\Theta}_{\text{reaction}} = 4y + [6 \times (-242)] - [4 \times (-46.0)]$ = 4y - 1452 + 184	(1)
		$\Delta H_{\text{reaction}}^{9}$ is -906 kJmol ⁻¹ so 4y = -906 + 1452 - 184 = 362 whence $y = \Delta H_{e}^{9}$ for NO = +90.5 kJ mol ⁻¹	(1)
		+ sign is require	(1)
			[Total: 10]

<u>CHEMISTRY ONLINE</u> — TUITION —

(e)	6 (six)	[1]
(ii)	either $H_2NCH(CH_3)CO-NHCH(CH_2OH)CO_2H$ or $H_2NCH(CH_2OH)CO-NHCH(CH_3)CO_2H$	[2 [3]
(f) (ii)	Compounds have the same structural formula but different (spatial) arrangement/position <i>or</i> orientation of atoms in space	[1]
(iii)	H CH ₃ H ₂ N ^{WWWW} H	L · J
	HO ₂ C OH	[1] [3]
		[Total: 17]