Equilibria Mark Scheme 9

Level		International A	Level			
Subject		Chemistry				
Exam Board		CIE				
Торіс	E	Equilibria				
Sub-Topic						
Paper Type		Theory				
Booklet		Mark Scheme	9			
Time Allowed: Score: Percentage:	63 minutes /52 /100					
Grade Boundaries:						
A* A	В	С	D	E		
A ⁺ A	Б	C	U	L	U	

1	(a	(i)	thermal stability decreases down Group VII	(1)	
		(ii)	from C <i>l</i> to I, atomic size increases or the bonding pair is further from the nucleus of X or H—X bond becomes longer or smaller orbital overlap occurs hence H—X bond strength decreases down Group VII	(1) (1)	[3]
			ru 177 ²		
	(b)	K _c =	$= \frac{[\mathrm{HI}]^2}{[\mathrm{H}_2] \times [\mathrm{I}_2]}$		(1)
		no i	units – must be clearly stated	(1)	[2]
	(c)	(no change	(1)	
			$K_{\rm c}$ has no units or same no. of molecules / moles each side of equilibrium	(1)	
		(ii)	equilibrium moves to RHS <i>K</i> c increases with decreasing temperature or	(1)	
			forward reaction is exothermic or reverse reaction is endothermic	(1)	[4]
	(d)	equ	al moles $H_2(g)$ $I_2(g)$ \Rightarrow $2HI(g)$ al moles 0.02 0.02 0 uil. moles $(0.02 - y)$ $(0.02 - y)$ $2y$ uil. conc/mol dm ⁻³ $(0.02 - y)$ $(0.02 - y)$ $2y$ 1111	(1)	
			$= \frac{HI^{2}}{[H_{2}] \times [I_{2}]} = \frac{(2y)^{2}}{(0.02 - y)^{2}} = 59$ $\frac{2y}{02 - y} = \sqrt{59} = 77$	(1)	
		2y =	$= (7.7 \times 0.02) - 7.7y$		
		9.7	y = 0.154		
		give	es y = $\frac{0.154}{9.7}$ = 0.0159= 0.016	(1)	
		at e	equilibrium		
			$II) = 2 \times 0.016 = 0.032$ and $I_2) = n(I_2) = (0.02 - 0.016) = 0.004$	(1)	
		allo	w ecf where possible		[4]

asherrana@chemistryonlinetuition.com

[Total: 13]

2	(a		nufacture of ammonia/Haber process or hydrogenation of fats/oils or king margarine or hydrocracking	(1)	[1]
	(b)		increasing the pressure equilibrium will move to LHS fewer moles/molecules on LHS or more moles/molecules on RHS	(1) (1)	
		(ii)	decreasing the temperature equilibrium will move to LHS forward reaction is endothermic	(1) (1)	[4]
	(c)		e will increase lisions will occur more frequently	(1) (1)	[2]
	(d)	(i)	<u>K_c = [CO₂][H₂]</u> [CO][H ₂ 0]	(
		(ii)	$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$		
			initial moles $\begin{array}{cccc} 0.40 & 0.40 & 0.20 & 0.20 \\ equil moles & (0.40 - y) & (0.40 - y) & (0.20 + y) & (0.20 + y) \\ equil concn./mol & (0.40 - y) & (0.40 - y) & (0.20 + y) & (0.20 + y) \\ dm^{-3} & 1 & 1 & 1 & 1 \end{array}$	• /	
			$K_{\rm c} = \frac{(0.20 + y)^2}{(0.40 - y)^2} = 6.40 \times 10^{-1}$	(1)	
			$\frac{(0.20 + y)}{(0.40 - y)} = \sqrt{6.40} \times 10^{-1} = 0.8$		
			$(0.20 + y) = 0.8 \times (0.40 - y)$		
			0.20 + y = 0.32 - 0.8 y		
			1.8 y = 0.12		
			gives y = 0.067	(1)	
			at equilibrium		
			$n(CO) = n(H_2O) = (0.40 - 0.067) = 0.33 \text{ mol } and$ $n(CO_2) = n(H_2) = (0.20 + 0.067) = 0.27 \text{ mol}$		
			allow ecf as appropriate	[5]	
			[Tot	al: 12]	

				[Total:	: 15]
	(e)	pre	nperature of 450°C ssure of 1 – 2 atm D₅/vanadium(V) oxide/vanadium pentoxide c ata lyst	(1) (1)	[3]
	(d)	hel	p detect leaks of gas	(1)	[1]
			damage to watercourses or forests/ aquatic life destroyed/ corrosion of metals	(1)	[6]
			for SO ₂ formation of acid rain damage to stonework of buildings/ dissolving of aluminium ions into rivers/ damage to watercourses or forests/	(1)	
		(ii)	for CO ₂ enhanced greenhouse effect global warming	(1) (1)	
	(c)		$\begin{array}{l} C_2H_5SH + {}^9\!I_2O_2 \rightarrow 2CO_2 + SO_2 + 3H_2O \text{ or} \\ 2C_2H_5SH + 9O_2 \rightarrow 4CO_2 + 2SO_2 + 6H_2O \\ \text{correct products} \\ \text{correct equation which is balanced} \end{array}$	(1) (1)	
	(b)	eth	anol has hydrogen bonding, ethanethiol does not	(1)	[1]
			$C_{14}H_{30} \rightarrow C_7H_{16} + 2C_2H_4 + C_3H_6$ do not allow any equation with H ₂	(1)	[4]
		(iii)	$C_{14}H_{30} \rightarrow C_{7}H_{16} + C_{7}H_{14} \text{ or}$ $C_{14}H_{30} \rightarrow C_{7}H_{16} + C_{2}H_{4} + C_{5}H_{10} \text{ or}$ $C_{14}H_{30} \rightarrow C_{7}H_{16} + C_{3}H_{6} + C_{4}H_{8} \text{ or}$		
		(ii)	using high temperatures/thermal cracking or using catalysts/catalytic cracking	(1)	
			smaller hydrocarbons are more useful or smaller hydrocarbons are more in demand	(1)	
3	(a	(i)	break large hydrocarbons into smaller hydrocarbons or break down large hydrocarbons	(1)	

(a) N≡N triple bond is (very) strong *or* the N₂ molecule has no polarity 4

	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
LE	= $-\Delta H_1 - \Delta H_2 - 461 = -12,753 \text{ (kJ mol}^{-1})$ (-[1] for e	ach error) [3]
(c) (i)	Li_3N + $3H_2O \rightarrow NH_3$ + $3LiOH$ (balanced equation)	[1]
(ii)	advantage: no high pressure/temperature/catalyst needed/standard con disadvantage: Li is expensive <i>or</i> Li would need to be recycled/removed	ditions used [1]
	<i>or</i> LiOH by-product is corrosive/strongly basic <i>or</i> this would be a batch, rather than continuous process	[1]
(d) (i)	Li ₃ N: 100 × 14/35 = 40% N urea: 100 × 28/60 = 47% N	[1] [1]
(ii)	amide	[1]
(iii)	$\begin{array}{r} NH_2CONH_2 + H_2O \ \rightarrow \ 2NH_3 + CO_2 \\ \textbf{or} \ \rightarrow \ NH_2CO_2H + NH_3 \\ \textbf{or} \ NH_2CONH_2 + 2H_2O \ \rightarrow \ 2NH_3 + H_2CO_3 \end{array}$	[1]
(iv)	The LiOH would be strongly alkaline or would increase the pH of the soil or would 'burn' the crops/reduce plant growth/stunt plants or would contaminate the environment	[1] [Total: 12]

asherrana@chemistryonlinetuition.com

[1]