11.1 Current & Potential Difference

Question Paper

Course	CIE A Level Physics (9702) 2019-2021	
Section	11. Current of Electricity	
Topic	11.1 Current & Potential Difference	
Difficulty	Medium	

Time allowed: 10

Score: /10

Percentage: /100

The charge that an electric battery can deliver is specified in ampere-hours.

For example, a battery of capacity 40 ampere-hours could supply, when fully charged, 0.2 A for 200 hours.

What is the maximum energy that a fully charged 12 V, 40 ampere-hour battery could supply?

A 1.7 kJ

B 29 kJ

C 1.7 MJ

D 29 MJ

[1 mark]

Question 2

The current in the circuit shown is 4.8 A

What is the direction of flow and the rate of flow of electrons through the resistor R?

	direction of flow	rate of flow
Α	X to Y	$3.0 \times 10^{19} \mathrm{s}^{-1}$
В	X to Y	$6.0 \times 10^{18} \mathrm{s}^{-1}$
С	Y to X	$3.0 \times 10^{19} \mathrm{s}^{-1}$
D	Y to X	$6.0 \times 10^{18} \mathrm{s}^{-1}$

A battery, with a constant internal resistance, is connected to a resistor of resistance 250 Ω , as shown.

The current in the resistor is 40 mA for a time of 60 s. During this time 6.0 J of energy is lost in the internal resistance.

What is the energy supplied to the external resistor during the 60 s and the e.m.f. of the battery?

	energy / J	e.m.f / V
Α	2.4	2.4
В	2.4	7.5 TD
С	24	10.0
D	24	12.5

In a simple electrical circuit, the current in a resistor is measured as (2.50 \pm 0.05) mA. The resistor is marked as having a value of 4.7 Ω \pm 2%.

If these values were used to calculate the power dissipated in the resistor, what would be the percentage uncertainty in the value obtained?

A 2%

B 4%

C 6%

D 8%

[1 mark]

Question 5

A milliammeter shows a reading of 20 mA.

How many electrons flow through the milliammeter in 10 seconds?

A 0.20

B 3.2×10^{20}

C 200

D 1.3×10^{18}

[1 mark]

Question 6

A power cable X has resistance R and carries current I.

A second cable Y has resistance 2R and carries current $\frac{I}{2}$

What is the ratio $\frac{power\ dissipated\ in\ Y}{power\ dissipated\ in\ X}$?

Α

 $\frac{1}{4}$

В

 $\frac{1}{2}$

С

2

D

4

Two copper wires of the same length but different diameters carry the same current.

Which statement about the flow of charged particles through the wires is correct?

- A charged particles are provided by the power supply, therefore, the speed at which they travel depends only on the voltage of the supply
- **B** the charged particles in both wires move with the same average speed because the current in both wires is the same
- **C** the charged particles move faster through the wire with the larger diameter because there is a greater volume through which to flow
- **D** the charged particles move faster through the wire with the smaller diameter because it has a larger potential difference applied to it

[1 mark]

Question 8

Two lamps are connected in series to a 250V power supply. One lamp is rated 240V, 60W and the other is rated 10V, 2.5W.

Which statement most accurately describes what happens?

- A both lamps light at less than their normal brightness
- **B** both lamps light normally
- **C** only the 60W lamp lights
- **D** the 10V lamp blows

The potential difference across a component in a circuit is 2.0 V.

How many electrons must flow through this component in order for it to be supplied with 4.8 J of energy?

- **A** 2.6×10^{18}
- **B** 1.5×10^{19}
- **C** 3.0×10^{19}
- **D** 6.0×10^{19}

[1 mark]

Question 10

The diagrams show two different circuits.

The cells in each circuit have the same electromotive force and zero internal resistance. The three resistors each have the same resistance *R*.

In the circuit on the left, the power dissipated in the resistor is P.

What is the total power dissipated in the circuit on the right?

- Α
- $\frac{P}{4}$
- В
- $\frac{P}{2}$
- С
- P
- **D** 2*P*