5.2 Forces: Equilibrium, Density & Pressure

Question Paper

Course	CIE A Level Physics (9702) 2019-2021	
Section	5. Forces, density and pressure	
Topic 5.2 Forces: Equilibrium, Density & Pressure		
Difficulty	Hard	

Time allowed: 10

Score: /10

Percentage: /100

Icebergs typically float with a large volume of ice beneath the water. Ice has a density of 917 kg m⁻³ and a volume V_i

The density of seawater is 1020 kg m⁻³

What fraction of the ice is submerged underwater?

- **A** $0.05 V_i$
- **B** $0.10 V_i$
- **C** $0.90 V_i$
- **D** $0.95 V_i$

[1 mark]

Question 2

A child drinks a liquid of density ρ through a vertical straw.

Atmospheric pressure is p_0 and the child is capable of lowering the pressure at the top of the straw by 10%. The acceleration of free fall is g.

What is the maximum length of straw that would enable the child to drink the liquid?

- A -
- 0 0 g
- В
- $\frac{9p_0}{10\rho g}$
- С
- $\frac{p_0}{\rho a}$
- D
- $\frac{10p_0}{\rho g}$

Liquid Q has twice the density of liquid R.

At depth x in liquid R, the pressure due to the liquid is 4 kPa.

At what depth in liquid Q is the pressure due to the liquid 7 kPa?

Α

$$\frac{2x}{7}$$

В

$$\frac{7x}{8}$$

C

$$\frac{8x}{7}$$

D

$$\frac{7x}{2}$$

[1 mark]

Question 4

Two solid substances P and Q have atoms of mass M_P and M_Q respectively. They have n_P and n_Q atoms per unit volume.

The density of P is greater than the density of Q.

Which expression must be correct?

$$\mathbf{A} \quad M_P > M_O$$

$$\mathbf{B} \quad n_P > n_Q$$

$$\mathbf{C} \quad M_P n_P > M_Q n_Q$$

$$\mathbf{D} \quad \frac{M_P}{n_P} > \frac{M_Q}{n_Q}$$

The diagram shows a flask connected to a U-tube containing liquid. The flask contains air at atmospheric pressure.

The flask is now gently heated and the liquid level in the right-hand side of the U-tube rises through a distance h. The density of the liquid is ρ .

What is the increase in pressure of the heated air in the flask?

A
$$h
ho$$
 B $rac{1}{2}h
ho g$ C $h
ho g$ D $2h
ho g$

The diagram shows a metal cube of density ρ suspended from a spring balance before and during immersion in water. Each face of the cube has a surface area A and each edge has length h.

A reduction in the balance reading occurs as a consequence of the immersion. The cube experiences pressures p_1 and p_2 at its top and bottom surfaces respectively.

What is the value of the upthrust on the metal cube during immersion?

- **A** $Ah\rho g$
- **B** $Ah\rho g + p_1 A$
- \mathbf{C} p_2A
- $\mathbf{D} \quad p_2 A p_1 A$

A W-shaped tube contains two amounts of mercury, each open to the atmosphere. Air at pressure P is trapped in between them. The diagram shows two vertical distances x and y.

Atmospheric pressure is equal to the pressure that would be exerted by a column of mercury of height 760 mm. The pressure *P* is expressed in this way.

Which values of x, y and P are possible?

	x / mm	y / mm	P / mm of Mercury
Α	20	20	780
В	20	30	780
С	30	20	810
D	30	30	790

Full-fat milk is made up of fat-free milk mixed with fat.

A volume of 1.000×10^{-3} m³ of full-fat milk has a mass of 1.035 kg. It contains 4.00% fat by volume.

The density of fat-free milk is $1.040 \times 10^3 \text{ kg m}^{-3}$

What is the density of fat?

- **A** $1.25 \times 10^2 \text{ kg m}^{-3}$
- **B** $9.15 \times 10^2 \text{ kg m}^{-3}$
- **C** $9.28 \times 10^2 \text{ kg m}^{-3}$
- **D** $1.16 \times 10^3 \text{ kg m}^{-3}$

[1 mark]

Question 9

A cylindrical block of wood has cross-sectional area A and weight W. It is totally immersed in water with its axis vertical. The block experiences pressures p_t and p_b at its top and bottom surfaces respectively.

Which expression is equal to the upthrust on the block?

$$\mathbf{A} \quad (p_b - p_t)A + W$$

$$\mathbf{B} \quad (p_b - p_t)$$

$$\mathbf{C} \quad (p_b - p_t)A$$

$$\mathbf{D} \quad (p_b - p_t)A - W$$

The density of water is 1.0 g cm⁻³ and the density of glycerine is 1.3 g cm⁻³

Water is added to a measuring cylinder containing 40 cm³ of glycerine so that the density of the mixture is 1.1 g cm⁻³. Assume that the mixing process does not change the total volume of the liquid

What is the volume of water added?

 \mathbf{A} 40 cm³

B 44 cm³

C 52 cm³

D 80 cm³