13.1 Atoms, Nuclei & Radiation

Question Paper

Course	CIE A Level Physics (9702) 2019-2021	
Section	13. Particle & Nuclear Physics	
Topic	13.1 Atoms, Nuclei & Radiation	
Difficulty	Medium	

Time allowed: 20

Score: /15

Percentage: /100

An element with an unstable nucleus decays by emitting an alpha particle to become the nucleus of a different element.

The nucleus of the new element is unstable and will emit either an α -particle or a β ⁻ particle. This process continues until an isotope of the original element is formed.

What is the minimum possible number of the particles emitted?

Question 2

Astatine is a radioactive substance; it has a nucleon number of 218 and a proton number of 85. When it decays it forms a polonium nucleus, emitting a β^- particle and an α -particle.

What are the nucleon number and the proton number of the polonium nucleus?

	nucleon number proton number	
Α	214	84
В	214	83
С	216	83
D	215	82

A radioactive substance with a nucleon number of 234 and a proton number of 90, decays by β -emission into a daughter product which in turn decays by further β -emission into a granddaughter product.

Which letter in the diagram represents the granddaughter product?

A sequence of radioactive decays is shown in the graph of neutron number against proton number.

Nucleus S is at the start of the sequence and, after the decays have occurred, nucleus T is formed.

What is emitted during the sequence of decays?

- **A** one α -particle followed by one β -particle
- $\bf B$ two β-particles followed by one α-particle
- ${f C}$ two ${f \alpha}$ -particles followed by two ${f \beta}$ -particles
- **D** one α -particle followed by two β -particles

Antimatter is a particle that is an antiparticle to the corresponding particle. A positron is the antiparticle of an electron.

What is the difference between a positron and an electron?

- A mass
- B magnitude of charge
- C charge
- **D** spin

[1 mark]

Question 6

Three successive radioactive decays are shown in the diagram below; each one results in a particle being emitted.

The first decay results in the emission of a β -particle. The second decay results in the emission of an α -particle. The third decay results in the emission of another β -particle.

Nuclides W and Z are compared. Which statement is correct?

- A W and Z are isotopes of the same element
- **B** Z is a different element of reduced mass
- **C** Z is a different element of lower atomic number
- **D** W and Z are identical in all respects

Two α -particles with equal energies are deflected by a gold nucleus.

Which diagram best represents their paths?

Question 8

A thorium isotope has a nucleon number of 232 and a proton number of 90. It decays to form another isotope of with a nucleon number of 228.

How many alpha particles and beta particles are emitted during this decay?

	alpha particles	beta particles
Α	0	4 4
В	1	2
С	1	1
D	2	1

The nuclides shown in the grid below are arranged according to the number of protons and neutrons in each.

A nucleus of the nuclide 8_3Li decays by emitting a β -particle.

What is the resulting nuclide?

Alpha, beta and gamma radiations:

- are absorbed to different extents in solids 1
- 2 behave differently in an electric field
- behave differently in a magnetic field 3

Diagrams 1, 2 and 3 illustrate these behaviours.

Which three labels on these diagrams refer to the same kind of radiation?

- **A** X, L, R **B** W. L, R **C** W, L, P **D** Y, M, P

_					_	_
$\boldsymbol{\cap}$		-	_	-	7	7
u	ue	SLI	w	п		. 1

An element emits an alpha particle from its radioactive nucleus.

The daughter nucleus then emits a beta particle, and then the daughter nucleus of that reaction emits another beta particle.

Which statement describes the final nuclide that is formed?

- A it is a nuclide of the same element but with different proton number
- B it is a nuclide of a different element of higher proton number
- **C** it is a different isotope of the original element
- **D** it is identical to the original nuclide

[1 mark]

Question 12

The isotope ${}^{222}_{86}Rn$ decays in a sequence of emissions to form the isotope ${}^{206}_{82}Pb$.

It will either emit an $\alpha\text{-particle}$ or a $\beta\text{-particle}$ at each stage of the decay sequence.

What is the number of stages in the decay sequence?

A 20 **B** 16 **C** 8 **D** 4

Nucleus X decays in two stages to produce nucleus Y.

Which decay sequence will result in the highest number of neutrons in nucleus Y?

- **A** an α -particle followed by a β -particle
- **B** a β-particle followed by a γ -ray
- **C** a β -particle followed by another β -particle
- **D** an α -particle followed by a γ -ray

[1 mark]

Question 14

When α-particles are directed at gold leaf

- 1 almost all α -particles pass through without deflection,
- 2 a few α -particles deviate through large angles.

What are the reasons for these effects?

	1	2
A	the positive charge in an atom is not concentrated enough to deflect an α-particle	occasionally an α-particle experiences many small deflections in the same direction
В	the gold nucleus is very small so most α-particles miss all nuclei	occasionally the path of an α-particle is close to a nucleus
С	most α-particles miss all gold atoms	a few α-particles bounce off gold atoms
D	most α-particles have enough energy to pass right through the gold leaf	gold is very dense so a few low energy α-particles bounce back from the gold surface

A radioactive nucleus is formed by β -decay. This nucleus then decays by α -emission.

The graphs below show the nucleon number N plotted against proton number Z. Which one shows the β -decay followed by the α -emission?

