1.1 Physical Quantities & Units

Question Paper

Course	CIE A Level Physics (9702) 2019-2021
Section	1. Physical Quantities & Units
Topic	1.1 Physical Quantities & Units
Difficulty	Hard

Time allowed: 10

Score: /10

Percentage: /100

A glider is descending at a constant speed at an angle of 15° to the horizontal. The diagram shows the directions of the lift **L**, air resistance **R** and weight **W** acting on the glider.

Which vector triangle could represent the forces acting on the glider?

The diagrams represent systems of coplanar forces acting at a point. The lengths of the force vectors represent the magnitudes of the forces.

Which system of forces is in equilibrium?

Question 3

Which formula could be correct for the speed v of ocean waves in terms of the density ρ of sea-water, the acceleration of free fall g, the height h of the wave and the wavelength λ ?

A
$$v = \sqrt{\rho g h}$$
 B $v = \sqrt{\frac{g}{h}}$ C $v = \sqrt{g \lambda}$ D $v = \sqrt{\frac{g}{\rho}}$

Two forces, each of 10 N, act at a point *P* as shown in the diagram. The angle between the force vectors is 120°

What is the magnitude of the resultant force?

A 5 N

В

10 N

C

17 N

D

20 N

[1 mark]

Question 5

The drag coefficient C_d is a number with no units. It is used to compare the drag on different cars at different speeds. It is given by the equation

$$C_d = \frac{2F}{\rho v^n A}$$

where F is the drag force on the car, ρ is the density of the air, A is the cross-sectional area of the car and v is the speed of the car.

What is the value of *n*?

Α

1

В

2

C

3

D

4

When a constant braking force is applied to a vehicle moving at speed v, the distance d moved by the vehicle as it comes to rest is given by the expression

$$d = kv^2$$

where k is a constant.

When d is measured in metres and v is measured in metres per second, the constant has a value of k_1 .

What is the value of the constant when the distance is measured in metres, and the speed is measured in kilometres per hour?

Α $0.0772k_1$ В $0.278k_1$

 $3.60k_1$

 $13.0k_{1}$

[1 mark]

Question 7

The frictional force F on a sphere falling through a fluid is given by the formula

$$F = 6\pi a \eta v$$

where a is the radius of the sphere, η is a constant relating to the fluid and ν is the velocity of the sphere.

What are the units of η ?

Α $kg m s^{-1}$

B $kg m^{-1} s^{-1}$ **C** $kg m s^{-3}$ **D** $kg m^3 s^{-3}$

Which statement is **incorrect** by a factor of 100 or more?

- A Atmospheric pressure is about 1 × 10⁵ Pa
- **B** Light takes 5×10^2 s to reach us from the Sun
- **C** The frequency of ultraviolet light is 3×10^{12} Hz
- **D** The life-span of a man is about 2×10^9 s

[1 mark]

Question 9

Which estimate is realistic?

- A The kinetic energy of a bus travelling on an expressway is 30,000J
- **B** The power of a domestic light is 300W
- **C** The temperature of a hot oven is 300K
- **D** The volume of air in a car tyre is 0.03m^3

The speed v of a liquid leaving a tube depends on the change in pressure ΔP and the density ρ of the liquid. The speed is given by the equation

$$v = k \left(\frac{\Delta P}{\rho}\right)^n$$

where *k* is a constant that has no units.

В

What is the value of *n*?

 $\frac{1}{2}$

Α

1

С

3

D

2