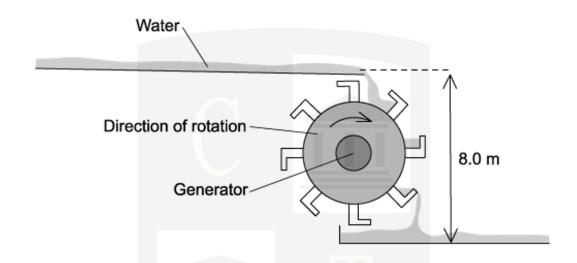
6.1 Energy Conservation

Question Paper


Course	CIE A Level Physics (9702) 2019-2021	
Section	6. Work, Energy & Power	
Topic	6.1 Energy Conservation	
Difficulty	Medium	

Time allowed: 10

Score: /9

Percentage: /100

The diagram shows the design of a water wheel which drives a generator to produce electrical energy. The flow rate of the water is 200 kg s⁻¹. The generator supplies a current of 32 A at a voltage of 230 V.

Ignoring any changes in kinetic energy of the water, what is the efficiency of the system?

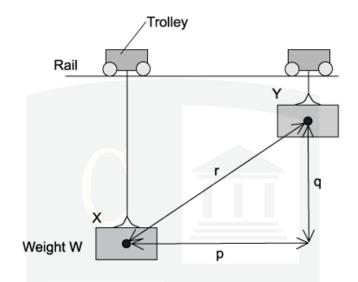
A 14 %

B 16 %

C 22 %

D 47 %

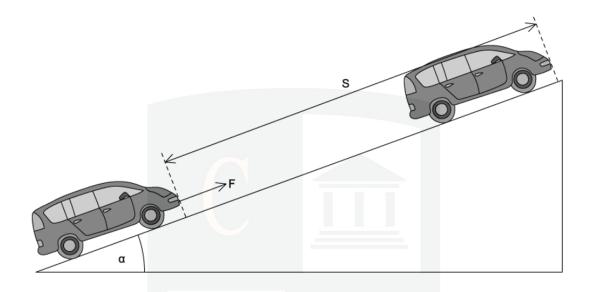
A bungee jumper has 24 kJ of gravitational potential energy at the top of his jump. He is attached to an elastic rope which starts to stretch after a short time of free fall. Assume that energy loss through air resistance is negligible.


	GPE / kJ	EPE / kJ	KE / kJ
Тор	24	0	0
Bottom	0	24	0

What are the possible values when the jumper is half-way down?

	GPE / kJ	EPE / kJ	KE / kJ
Α	12	10	2
В	12	8	4
С	8	8	8
D	12	2	10

A weight W hangs from a trolley that runs along a rail. The trolley moves horizontally through a distance p and simultaneously raises the weight through a height q.



As a result, the weight moves through a distance *r* from X to Y. It starts and finishes at rest.

How much work is done on the weight during this process?

- A Wp
- B W(p+q)
- C Wa
- D Wr

A constant force F, acting on a car of mass m, moves the car up a slope through a distance s at constant velocity v. The angle of the slope to the horizontal is α .

Which expression gives the efficiency of the process?

$$\mathbf{A} \qquad \frac{mgs\sin\alpha}{Fv}$$

$$\frac{mv}{Fs}$$

$$\frac{mv^2}{2Fs}$$

$$\frac{mg\sin\alpha}{F}$$

The data below are taken from a test of a petrol engine for a motor car.

power output 150 kW

fuel consumption 20 litres per hour

energy content of fuel 40 MJ per litre

Which expression will evaluate the efficiency of the engine?

A
$$150 \times 10^3$$
 $40 \times 10^6 \times 20 \times 60 \times 60$

$$\frac{150 \times 10^3 \times 60 \times 60}{20 \times 40 \times 10^6}$$

C
$$150 \times 10^3 \times 40 \times 10^6 \times 20$$

 60×60

$$\frac{150 \times 10^3 \times 20}{40 \times 10^6 \times 60 \times 60}$$

[1 mark]

Dr. Asher Rana


The first column in the table gives four examples of work being done. The second column gives more detail of the action.

Which row is **not** correct?

	example	Detail	
Α	a girl dives from a diving board into a swimming pool	work is done by the girl against gravity as she falls	
В	a man pushes a car along a level road	work is done by the man against friction	
С	an electron is accelerated towards a positively-charged plate	work is done on the electron by the electric field of the plate	
D	a piston is pushed outwards as a gas expands	work is done on the atmosphere by the gas	

Initially, four identical uniform blocks, each of mass m and thickness h, are spread on a table.

How much work is done on the blocks in stacking them on top of one another?

A 3 mgh **B** 6 mgh **C** 8 mgh **D** 10 mgh

[1 mark]

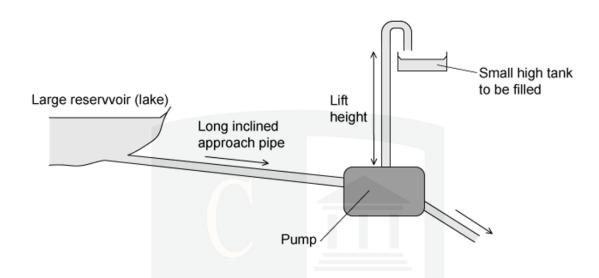
CHEMISTRY ONLINE

TITTON

Trains supply coal to a power station. The table below gives quantities describing the operation of the power station.

	symbol	unit
power station output	P	W
number of trains per day	N	
mass of coal on a train	М	kg
energy from 1 kg of coal	J	J
number of seconds in one day	S	s

Which expression gives efficiency of the power station?


$$\mathbf{A} \qquad \frac{PS}{NMJ}$$

$$\frac{PSN}{MI}$$

$$\frac{NMJ}{PS}$$

$$\frac{NM}{PSJ}$$

The diagram shows a pump called a hydraulic ram

In one such pump the long approach pipe holds 500 kg of water. A valve shuts when the speed of this water reaches 2.0 m s^{-1} and the kinetic energy of this water is used to lift a small quantity of water by a height of 15 m.

The efficiency of the pump is 10%.

Which mass of water could be lifted 15 m?

- **A** 0.15 kg
- **B** 0.68 kg
- C 1.5 kg
- **D** 6.8 kg